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Abstract 

The paper presents a new approach to the research into the aerodynamic 
characteristics of vehicles and their interpretation. The approach is based on the 
theory of collision. The virtual mass is related to the unit coefficient of 
restitution of a central collision and to the absorption of kinetic energy. The basic 
system is chosen to be a train, and the system involving the virtual mass effect is 
air. A series of successive collisions of these two systems provides a model of air 
resistance. The expression derived for the unit virtual mass states that it is equal 
to a half of the coefficient of the square polynomial term of the air drag function. 
Thus, a physical interpretation of the virtual mass has been obtained and the 
metric system of the air resistance has been determined. A relation between the 
virtual mass and the most important aerodynamic characteristic, i.e. the 
coefficient of aerodynamic profile, has been established.  
Keywords: aerodynamics, train resistance, ETR 500. 

1 Introduction 

All vehicles move in two systems. The first is the ground, which acts on the 
vehicle in an indirect way through gravity. The product of mass of the vehicle 
and the local gravity gives its weight, which is directly related to the resistance to 
motion. A complex structure of resistance is of particular importance in railway 
vehicles. 
     The other material system is the surrounding air which acts on a land vehicle 
directly, according to Newton’s third law, i.e. the action-reaction law. The 
motion of a vehicle changes the inertial status of elements of the material system 
of air, resulting in a reactive natural phenomenon known as air resistance.  
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     Bearing in mind the intensity of the vehicle exploitation, reduction in the 
resistance to motion of the vehicle is the basis for efficient energy use. 
Therefore, it is very important to accurately calculate the resistance to motion of 
a vehicle. The solution to the problem of the magnitude of air resistance related 
to high-speed trains is of particular importance. It has been determined 
experimentally that in the cases when high speeds are involved the air resistance 
forms a major part in the resistance to motion of a vehicle [1]. The problem of air 
resistance is particularly pronounced with trains due to their length, i.e. their 
large side surfaces. One of the means to reduce air resistance is the formation of 
the aerodynamic profile of the train, with special attention paid to the 
aerodynamic shape of the front, which plays a major role in the total train 
resistance [2–5]. 
     The problem of air resistance becomes even more complex when it comes to 
different limitations related to the volume [6–9] or to the motion of air masses 
and wind [10–15]. 

2 Theory of virtual mass 

When a moving material system comes into contact with another material system 
which can be moving or at rest, a complex dynamic process in the form of 
collision arises. Two material systems collide if at least one material system has 
a certain amount of motion, i.e. kinetic energy. After the collision, changes in the 
speed of the material systems occur. These changes include changes in the 
direction, sense and intensity.  
     A central collision of two systems occurs when both systems move on a 
straight line connecting their centres of inertia. If the contact point lies in the 
plane that connects the centres of inertia of the systems, there is no change in 
their direction of motion.  
     An elastic collision implies that the geometric characteristics of the systems 
before and after the collision remain unchanged. In real conditions, the energy 
balance of the kinetic energy of the systems before the elastic collision is not 
equivalent to the kinetic energy of the systems after the elastic collision. 
     The following is assumed about the virtual mass: 

1. Virtual mass in a central collision, and  
2. Virtual mass in a perfectly elastic collision. 

     A body of mass m has a velocity v0, and a body of mass m' has a velocity v'0. 
Both bodies move on a straight line connecting their centres of inertia. The post-
collision velocity of the body of mass m is v1, and of the body of mass m' it is v'1. 
According to the theorem on the change of momentum, it follows that: 
 1100 vmmvvmmv   (1) 

     A central collision between two bodies (Fig. 1) can occur: 
 
a) when two bodies are moving along the same line and in the same direction 

with the velocities which enable the collision; 
b) when two bodies move along the same line, but come from opposite 

directions; this is a head-on collision. 
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c) when one body is at rest on the line along which the other body is moving 
towards that body at rest.  

 

     The sign “±” from equation (1) refers to the cases defined under a) and b), 
while in the case defined under c) the starting velocity of m′ is equal to 0 and the 
whole term is not considered. The second equation for determining the velocities 
v1 and v′1 is obtained from Newton’s Law of Restitution which defines the 
coefficient of restitution as:    
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     By inserting expression (2) into expression (1), the following expressions for 
the post-impact velocity are obtained: 
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     In the case of a perfectly elastic collision, the coefficient of restitution equals 
1 (= 1). The simplest case is when v′0 = 0 and then expressions from (3) can be 
written as: 
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Figure 1: Central collisions: (a) rear-end collision (b) head-on collision 
(c) incursion collision. 

     If the virtual mass model is applied, the equivalence between a change in the 
vehicle speed (a change in the momentum, a change in kinetic energy) and the 
perfectly elastic central collision is established. Thus, the action of resistance 
forces can be indirectly expressed by a change in momentum. 

 110 vm)vv(mK   (5) 

     Therefore, the third characteristic of virtual mass has to be introduced: after a 
collision has happened or after any change in the inertia, the virtual mass 
disappears. The virtual mass behaves exclusively as an absorber of kinetic 
energy (of the momentum) and it is impossible for virtual mass to take part in a 
chain reaction of the collision with other virtual masses. 
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     For such a system, the law of conservation of kinetic energy is valid. A body 
of mass m can be stopped only in a collision with a body of the same or greater 
mass. Provided that m>m′, the absorbed kinetic energy of virtual masses from 
(4) result in a geometric sequence. The sum of absorbed kinetic energies of 
virtual masses at unit spacing is equal to the initial kinetic energy. The condition 
m>m′ is always fulfilled when the virtual mass model is applied in 
aerodynamics. The vehicle mass m is always greater than the air mass m′.   
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3 Functions of the resistance force and the virtual mass 

Let a resultant force FR(i) >0 act on a train of a mass m, which moves at a velocity 
vi at the start of the unit spacing li = 1, i. This force, which acts in the opposite 
direction of the direction in which the train is moving, can be the resultant force 
of braking produced by: a single braking system or by breaking systems; by the 
braking system and resistance; or by more than one type of resistance.  
     Under the conditions stated above, the resultant force will cause the 
deceleration of the train ai, according to Newton’s law. At the end of the unit 
spacing li, a change in the velocity vvivi+1 occurs due to the action of the 
force. The momentum change caused by the resultant force FR(i)> 0 is equal to: 
 

 mvmvK iti  1  (7) 

     If the change in momentum is described by the theory of perfectly elastic 
central collision using the model of virtual masses at rest, we obtain the value of 
virtual mass which has caused the change in momentum K at unit spacing:  
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     Introducing the deceleration ai at a length of the path travelled li, we obtain: 
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     As li = 1, we obtain the value of virtual mass at unit spacing and the force 
which is equivalent to the action of the virtual mass at unit spacing: 
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     If a resultant force FR(i) that is opposite to the direction of the motion acts on a 
train of mass m on a length of path travelled li, the deceleration ai caused by that 
force is equal to the deceleration that would be caused by a perfectly elastic 
collision between the train and the virtual mass  m′ which is in the state of rest on 
the line along which the train moves. 
     The basic types of resistance include the friction in the bearings on axles, the 
resistance of the wheel rolling on railway tracks, the resistance of the wheel 
sliding on rails, the resistance due to rail joints, the resistance in the joints 
between carriages, the resistance of pantograph, air resistance, etc. The value of 
the sum of basic resistances as a function of the train speed is expressed by a 
second-order polynomial, which was established a long time ago by Schmidt 
(1910), Strahl (1913), Davis (1926), Munkhacev (1927) and proved by 
Muhlenberg 1 and Mancini et al. 16 and Lukaszewicz 17, 18: 

 2CvBvAF   (11) 

     We may now pose the question whether it is possible to separate air 
resistances from this basic expression for calculating the sum of basic resistances 
by using the virtual mass model. The idea comes from the fact that air resistances 
are a consequence of the action of one material system (air), and all other 
resistances involved are a consequence of another material system (ground, i.e. 
gravity).  
     One possible solution is to calculate the limit values of virtual masses 
obtained from the changes in kinetic energy at an infinite train speed.  
     Theorem: If the function of the train resistance is described by a standard 
second-order polynomial with the values of A, B and C expressing the speed in 
m/s, then, at infinite train speed, a half of coefficient C is equal to the value of 
virtual mass at a unit distance. 
     Proof: In the case of the action of resistance, the mean train speed, the mean 
resistance force at a unit distance and consecutive changes in kinetic energy at 
the unit distance (i, i+1) are:   
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     Let us express the value of virtual mass as a function of a constant resistance 
force by using expression (11). The change in kinetic energy at a unit distance, 
obtained by replacing the speeds and masses, is equal to: 
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     By solving the above quadratic equation, one can obtain the value of speed 
vi+1 at the end of the path travelled. The velocity vi+1 is a function of the speed vi 
and the action of the mean value of constant resistance forces F(i, i+1): 
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     If we now insert this value into expression (8) to calculate the values of 
virtual mass and if we find the limit value of the virtual mass when the velocity 
tends to infinity, there are only the terms with the highest exponent of the 
velocity vi  which remain: 
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     In a central collision between the train and the virtual mass, the backward 
motion of the train cannot happen as the train mass is incomparably greater than 
the unit virtual mass. The impulse of force in the described system is always 
positive; therefore, only the real solution from expression (15) can be accepted, 
which means that the sign “” from the numerator and the sign “+” from the 
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denominator are taken into account (these two signs are appropriate for the 
solution 0 to the quadratic equation).  Thus we get that the value of virtual mass 
at an infinite speed is equal to:   
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     In the virtual mass model, the virtual mass disappears after the train collides 
with it. In real conditions, after the train collides with the real mass air 
molecules, the air molecules do not disappear and they react with other air 
molecules in a series of collisions. However, in the expressions for the 
calculation of basic resistances, in which air resistances are included, real 
features and relations of the collision between air molecules and the train are 
included. These impacts can be transferred to the virtual mass. 
     In consecutive collisions, the distribution of virtual masses on the path of the 
train constitutes the linear density of virtual masses measured in (kgm). The 
product of the coefficient C and the square of velocity is equal to the force F, 
i.e. C v2  F. 
     The part of the product relating to basic resistances is in the SI because the 
linear density of virtual masses is expressed in the (kgm) unit. Expression (16) 
is dimensionally in accordance with that. With an increase in speed, the value of 
virtual mass m′ converges to a half of the coefficient C from the basic expression 
for the train resistance calculation (11). 
     As the train moves through the air medium at rest, the volume of the air is 
determined by the product of unit spacing and the frontal area of the train and it 
has the same mass. If the mass of air from the defined volume is conceived as 
one whole, we obtain the linear density of virtual masses. According to the above 
developed theorem, this imaginary mass has a quantity of a half of the C 
coefficient from expression (11), as shown in Figure 2.  
 

 
 

Figure 2: A virtual mass model. 

Computers in Railways XIII  739

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



4 Relation between the virtual mass and aerodynamic drag 
coefficient CD 

Aerodynamic drag, the part which is dependent upon speed squared, is usually 
written for no wind conditions as: 

 CCACvvCAF DfDfD 
2

1

2

1 22  (17) 

where ρ is the density of air, Af is the frontal area of train, CD is the aerodynamic 
drag coefficient 19. If the left side of equation (17) is expanded with a unit 
quotient of the length of the train LT, the volume of the train VT is equal to AfLT. 
The relation between the coefficient C and the virtual mass, according to (16) 
and (17), establishes a relation between the aerodynamic drag coefficient CD and 
the virtual mass m′: 
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     The form of this expression is the basis for the interpretation of virtual mass 
which is proportional to one quarter of the mass of the air which is displaced by 
one meter of the train. The coefficient of proportion is the aerodynamic drag 
coefficient CD (Fig. 3). 
 

 

Figure 3: Interpretation of virtual mass. 

     In addition, the aerodynamic drag coefficient CD can also be interpreted as a 
quotient of a quadruple value of virtual mass and the mass of the air displaced by 
the train at a unit spacing of 1 meter.  
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     With relation (16), (18) and (20), final expression for aerodynamic drag 
coefficient CD calculation is: 
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5 Practical application of virtual masses theory 

We are going to examine how linear density value changes depending on 
changes of contents length and mass. Then the front and top surfaces of train 
remain of the same in shape, whereas side surface increases. This example is 
examined on ETR 500 with the following characteristics 16: 

 The mass of a locomotive is 67.2 t and a carriage mass is 44.5 t; 
 The length of a locomotive is 20.46 m with cross-section 12.800m2,  
 The length of a carriage 26.10 m with cross-section 10.868 m2; 

     Experimental measuring revealed the following basic resistance formula  (for 
a composition of two locomotives and n carriages, the speed is in km/h) with 
non-integrated bogies 16 is: 

421056007126380511  tv)n..()n,.(F (kN) (22) 

     For speed in m/sec and resistance in (N), resistance formula is:
 

27257051636381510 tv)n..(nF  (N)  (23)
 

     The presentation of calculated virtual mass values for ETR500 train with two 
locomotives and n carriages for nonintegrated bogies is revealed in table 1. 
Aerodynamic drag coefficient CD is calculated according to (21), value for 
density of air is 1.225 kg/m3 (at sea level and at 15°C according to ISA 
International Standard Atmosphere) and Af is average frontal area (cross section). 

Table 1:  Calculation of virtual mass value at a unit distance and 
aerodynamic drag coefficient for different ETR 500 train 
configurations. 

No. of 
carr. 

Mass 
(t) 

Lt 

 (m) 
Af 

(m2) 
A C 

2

C
m   CD 

0 134.4 40.92 12,80 1510 3,51 1,756 0,2239 
1 178,9 67,02 12,16 2148 4,23 2,118 0,2843 
2 223,4 93,12 11,83 2786 4,96 2,481 0,3424 
3 267,9 119,22 11,64 3424 5,68 2,844 0,3989 
4 312,4 145,32 11,51 4062 6,41 3,207 0,4549 
5 356,9 171,42 11,42 4700 7,14 3,570 0,5103 
6 401,4 197,52 11,35 5338 7,86 3,933 0,5657 
7 445,9 223,62 11,30 5976 8,59 4,296 0,6206 
8 490,4 249,72 11,25 6614 9,31 4,659 0,6761 
9 534,9 275,82 11,22 7252 10,04 5,021 0,7306 
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     Physical air resistance interpretation on the example of a train set consisting 
of two engines and 9 carriages with non-integrated bogies equals serial run of the 
train front against virtual masses of 5.021 kg on every meter of crossed route.  
     By adding one carriage with nonintegrated bogies the virtual mass is always 
increased by 0.3628 kg/m per one carriage. The difference represents the virtual 
masses linear density increase arising from adding one inter-carriage without 
front and rair. Aerodynamic drag coefficient CD(carr) for one carriage with 
nonintegrated bogies side surface, without front and rair is:  
 

05450
868102251

362802
.

..

.
C )carr(D 




    (24) 

6 Conclusion 

Conditions of the virtual mass convergence at an infinite speed are required only 
for the creation of the virtual mass model. In the zones of high speeds, with the 
domination of air resistance, the virtual mass is equal to the theoretically proved 
value of a half of the coefficient C multiplied by the speed squared. At low 
speeds, a set of gravitational resistances is dominant in the resistance resultant. 
The virtual mass has the same theoretical value, but its participation in the value 
of total train resistance is negligible. In practical applications, the virtual mass is 
the invariance of the speed and it is always equal to C/2. 
     If the train moves through the air in no wind conditions, the virtual mass need 
not have a constant value and a stationary linear density. The change in the 
volume that occurs as the train enters a tunnel increases the value of virtual mass.  
     The virtual mass model has a special advantage in the possibility of 
calculating partial aerodynamic characteristics such as the resistance of the side 
surfaces of the train when the front/rear surfaces and the vertex surfaces are 
blocked by other carriages of the train. 
     The sources of variations in the value of virtual mass are multiple. The virtual 
mass model can also be applied in the case of wind conditions. All possible 
variations of the values of virtual mass can easily be quantified by the resistance 
force of the air.  
 
Symbols 
a  acceleration (deceleration), m/s2 Af  frontal area of the train, m2 
CD  aerodynamic drag coefficient K  momentum change, kgm/s 
A, B, C  coefficients of resistant function Ek  kinetic energy, J 
m  mass of the system, mass of the train, kg F  resistance force, N 
m′  mass of the system, virtual mass, kg FD  aerodynamic drag, N 
   Newton’s coefficient of restitution FR  resultant force, N 
i  index of unit spacing l  unit spacing, m 
vt  velocity of the train, km/h or m/s v,v  velocity of the virtual mass, m/s  
LT   length of the train, m vi,,vi velocity of the virtual mass, m/s 
  density of air, kg/m3 VT  volume of the train, m3 
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