
Rescheduling algorithm using operational
patterns for rolling stock operation at
train depots

T. Tomiyama1, T. Sato1, K. Okada2 & T. Wakamiya2
1Yokohama Laboratory, Hitachi, Ltd., Japan

2Infrastructure Systems Company, Hitachi, Ltd., Japan

Abstract

Railway companies have to create schedules for their rolling stock to operate a
large number of trains by defining which route each train runs on and when
maintenance is done. This scheduling task requires a lot of time and highly-
skilled operators, called rolling stock managers, because of numerous
complications. We developed an algorithm to help them that automatically
creates a schedule for rolling stock during disruptions. We applied the Dijkstra
method, which is a mathematical algorithm for searching efficient paths from a
network model like the routes taken by sales staff. Our algorithm takes into
consideration 1) maintenance cycles where railway companies are required by
law to periodically inspect the condition of all trains. It schedules maintenance to
continue these cycles. It also takes into account 2) operational patterns through
scheduling patterns to create schedules that can compete with manual schedules.
These patterns can represent experiences by rolling stock managers like the
rotations of train routes. We carried out numerical experiments using real data
(small and large numbers) at two train depots of a Japanese railway company.
The small ones included ten train sets and a bi-monthly schedule. The large ones
included 67 train sets and a monthly schedule. We generated experimental data
on virtual disruptions. Our algorithm could mostly generate feasible schedules
both from the small and large numbers of data, between 0.02 and 173.25 s, and
in 632.47 s. Slight deviations in maintenance cycles were involved in some of
the large ones. These results indicate that our algorithm could be feasible for real
situations, even though satisfaction with constraints and calculation time should
be improved to achieve highly interactive rescheduling operations.
Keywords: rolling stock operation, scheduling, Dijkstra method.

Computers in Railways XIII 555

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

doi:10.2495/CR120471

1 Introduction

1.1 Rolling stock operations at railway companies

Japanese laws require railway companies to regularly inspect their rolling stock
at stated intervals to ensure safe transportation, which are based on running
distances and inspection periods. Each railway company manages their rolling
stock by creating schedules of rolling stock operations and checking the results.
The schedules for rolling stock operations define the assignments of cars to
trains and the dates of inspections.
 The schedules for rolling stock operations are based on train timetables. Once
transport disorders occur, the schedules are changed. As a result, the running
distances of individual trains differ from those that are planned, and some trains
finish operations at unscheduled stations. Railway companies have to recreate
their schedules in these cases for the days after transport disorders occurred.
 Rescheduling requires a lot of time because these schedules are manually
prepared to ensure consistency with relevant departments such as departments
for inspection, those for planning train timetables, and those for crew
management. The rate of change in schedules has to be low to reduce the time
and labor spent in rescheduling.
 We propose an algorithm for rescheduling rolling stock operations in this
paper that takes into consideration operational patterns to reduce the number of
periods with changes.

1.2 Existing research

There has been some research regarding algorithms for scheduling rolling stock
operations for passenger or freight trains. This research has supported the
optimization of schedules such as minimizing both the number of seats and the
number of inspections [1–3]. They have proposed several algorithms to solve
scheduling problems such as hybrid methods of column generation and
Lagrangian relaxation [1, 3–5], Benders relaxation [6], heuristics methods like a
mixture of greedy and backtrack [2], and meta-heuristics [7]. These researchers
have aimed at automatically calculating optimal or feasible solutions. Our aim
was to calculate a feasible solution with operational patterns to reduce the
number of differences from original schedules.

2 Requirements of schedules for rolling stock operations

2.1 Schedules for rolling stock operations

The schedules for rolling stock operations are normally created in train units. A
train unit means a set of merged cars, which are not divided except in special
cases like those in breakdowns. The first step in assigning train units is to define
sets of trains that are assigned the same train unit (operation schedule). After
that, train units are respectively assigned to the sets of trains, and dates of

556 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

inspections are defined in regular cycles (car schedules). While operation
schedules are created each day, car schedules are created bi-monthly or monthly.
Figure 1 shows an example of schedules for rolling stock operations.

6：00

Station A

Station C

Station B

Train 1

7：00 8：00

Train 2

Train 3

Train 4

Train Set 1

Train Set 2

Train Set 2

Train
Unit A

Train Set 1

Train
Unit B

Sept. 1st

Operation Schedule on Sep. 1st

Sept. 2nd

Train Set 2

Car Schedule in September

Train Set 3

Sept. 31th

Train Set 3

Train Set 1
Train 5

Train
Set 3

Train Set 3Train
Unit C

Train Set 1 Train Set 2

Figure 1: Example of Schedules for rolling stock operations.

 Our target was to recreate a car schedule after a transport disorder had
occurred.

2.2 Constraints

There are three constraints that should be considered in car schedules.

(1) Connection constraint
This constraint limits sequences of a set of trains assigned to the same train unit.
It restricts the sequences to ones that ensure places are connected between dates
that are next to each other. Violation of this constraint means the train unit starts
to run from a station that is different from the station it arrived at on the previous
day. In such cases, a deadhead train is needed to complete the schedule. A
deadhead train causes changes in relevant schedules with train timetables and
planning for crews and it wastes additional electricity. To avoid additional
deadhead trains, car schedules should retain the sequences of places.

(2) Inspection constraint
This constraint keeps cycles of inspections consistent. There are several kinds of
inspections, and each inspection has a different cycle. Although we deal with
monthly inspections and daily inspections in this paper, this does not mean that
our algorithm is limited to these inspections. Daily inspections are the simplest
of all our inspections. The main parts of cars, such as pantographs and axletrees,
are visually confirmed at car depots. The cycle is normally defined to be between
three and five days. Monthly inspections include e.g., strict visual confirmations,

Computers in Railways XIII 557

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

inspections under the floor, the grinding of axletrees, and the exchange of
consumables. The cycle is normally defined within 30 days.

(3) Fewer differences from original schedule
This constraint is considered to reduce the range of influences affecting
rescheduling. Maintenance, such as daily inspections and work on shunting, are
planned on the basis of car schedules. Reducing the number of differences from
the original schedule leads to reducing the range of influences on this task.

3 Model and algorithm

3.1 Model

We represent a car schedule as a network model, where nodes represent a set of
trains included in a target period that are on the schedule and arks represent
connection constraints, which means arks are generated between nodes that can
be linked under connection constraints. In addition, if a train unit is stocked at a
car depot for a whole day, this operation is represented as a node, which is the
same as a set of trains. Each node has four attributes of the date when the set of
trains will run, the first station where the set of train will start to run, the last
station where the set of trains will finish running for a whole day, and the
possibility of daily inspections. The connection constraint, which was mentioned
in Section 2, is considered to represent arks of the network model. Therefore, the
assignment of a train unit can be represented as a path of the network model.
Figure 2 shows an example of this network model.

Train Set 3

Trains Set 1

September 1st

・・・

Path

Train Set 2

Train Set 1

Trains Set 2

Trains Set 3

September 2nd September 3rd September 4th

Figure 2: Network model for car schedule.

 Preparing a car schedule is a problem that extracts a set of paths from the
network model. Our algorithm takes into account three constraints when solving
this problem, where the constraints are defined on the basis of the constraints
mentioned in Section 2 and the characteristics of a car schedule.

558 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

(1) Each node is included in only one path.
Each set of trains is defined on the assumption that only one train unit is assigned
to one set. Paths cannot include the same nodes between each other to deal with
this assumption. When some train units are merged to assign one train together,
as many nodes that represent the same train are added to the network model as
the number of merged train units.

 1.iji N x
 (1)

(2) Each node is included in one path.
Even if a train unit does not run as trains for a whole day, train companies plan
this case as an operation “reserve”. For example, a train set is stocked at a train
depot when the train set is planned for inspection the next day, or to equalize
mileage. Therefore, all train units are assigned to trains or reserve operations.
This means each train unit is definitely assigned to one path.

 1.ijj T a
 (2)

(3) All paths include more than one inspection node in a consistent cycle.
If a set of trains includes a sufficient time interval to execute inspection, the node
representing the set of trains has an attribute that means the inspection is
practical. Our algorithm makes each path include such nodes within the
inspection cycle.

0

1.
k

i j m

m C

kseq
m

a 





 (3)

3.2 Algorithm

We describe the process of extracting a set of paths from a network model that
satisfies constraints in this section.






　

　

0

1
xij

： Node j is included in path i.

： Others

< Decision Variables >

T ： Total number of nodes

N ： Total number of train units






0

1
ajk

： Inspection k is executable at node j

： Others
Ck： Cycle of inspection k

Seq
ij

： Index number of node that is j th node included in path i .

< Invariables >

Computers in Railways XIII 559

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

 The connection and inspection constraints when creating a car schedule need
to be considered as mentioned in Section 2. Reducing the number of changes,
which was mentioned as the third constraint in Section 2, is considered to be the
objective of our algorithm because this constraint is less important than the other
two. Considering the two constraints, i.e., the connection and inspection
constraints simultaneously may require more time than considering each
constraint individually. In addition, daily inspections, which are the most
common, can be completed at unplanned dates in emergency situations like those
when transport disorders occur. Our algorithm takes the two constraints into
account individually giving priority to the calculation time to obtain a feasible
solution. First, our algorithm calculates a feasible solution under the connection
constraint. After that, it modifies the solution under the inspection constraint as
effectively as possible. Figure 3 outlines the flow to extract a set of paths.

Start

Step 1. Create a network model

Step 2. Select one train unit

Step 3. Solve a solution under connection
constraint

Step 4. Set daily inspection

Step 5. Solve a solution under inspection
constraint

Step 6. Modify the network model

All inspections can be set

Finish

All trains are processed

Yes
No

Yes
No

Figure 3: Flowchart for searching route sets from network model.

Step 1. Create a network model: A network model is created on the basis of a
timetable and a car schedule. The timetable reflects a transport disorder.
Step 2. Select one train unit: One train unit is selected from unprocessed train
units.
Step 3. Find a solution under the connection constraint: A path is explored under
the constraints mentioned in Section 3 as constraints (1) and (2). This exploring
process uses the Dijkstra method that extracts a path from a network model
minimizing the total weight of arks. To reduce the number of changes from the
original schedule, arks between the same nodes with those of the original
schedule are given smaller weights, which take into consideration constraint (3)
mentioned in Section 3.

560 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

Step 4. Set daily inspections: The path explored in Step 3 is verified as to
whether inspections can be set within consistent cycles.
Step 5. Solve a solution under the inspection constraint: If no inspection can be
set in Step 4, the path for the solution to the train unit is explored again. First,
another path is explored from the present network model. The previous solution
is canceled when no solution is available. This means that nodes included in the
solution of another train unit, which was previously calculated, are added to the
present network model (these nodes were excluded from the network model in
Step 6). After that, the solution is explored again. The number of cancelations is
limited to a few times each train unit to avoid excessively long calculation times.
Step 6. Modify the network model: Nodes included in the path explored in Step 5
are excluded from the present network model.
 The process from Steps 2 to 5 is repeated until solutions to all train units are
calculated or there are no more nodes in the network model.

4 Operational patterns

4.1 Categories of operational patterns

We extended the approach mentioned in Section 3 to reflect operational patterns
in the car schedule. The operational patterns provide regularity to the trains
assigned to each train unit. These patterns are used in common practice when a
car schedule is manually prepared. Our algorithm takes into account three
patterns that appear in actual car schedules.

(1) Sequence pattern: This pattern defines sequences of sets of trains that are

continuously assigned to the same train unit. Figure 4-(1) shows an
example of this pattern, where sequence pattern means that train sets 1, 2,
and 3 were continuously assigned to the same train unit on September 1,
September 2, and September 3.

(2) Exchange pattern: This pattern defines combinations of sets of trains that
exchange train units assigned to them. Figure 4-(2) shows an example of
this pattern, where exchange pattern means the sequence from train set 1 to
2 and the sequence from train set 3 to 1 can be exchanged. The sequence
from train set 1 to 2 is changed to the sequence from train set 1 to 1 by
following this pattern, and the sequence from train set 3 to 1 is changed to
the sequence from train set 3 to 2.

(3) Cutting pattern: This pattern defines combinations of sets of trains that
exchange train units in one day. Figure 4-(3) shows an example of this
pattern, where train sets 1 and 2 exchange trains included in each other.
Train set 1 in the original schedule include trains 1 and 4, and train set 2
include trains 2 and 3. Train sets 1 and 2 exchange trains 4 and 3 by
following this pattern.

Computers in Railways XIII 561

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

While the other patterns do not change combinations of trains in one day,
this pattern changes them. This leads to increased candidates for
connection, and the possibility of success for exploration is increased.

(1) Sequence pattern
e.g., Train Set 1  Train Set 2  Train Set 3

Train Set 1 on
Sept. 1st

Train Set 1 on
Sept. 2nd

Train Set 2 on
Sept. 1st Train Set 2 on

Sept. 2nd
Train Set 2 on
Sept. 3rd

Train Set 1 on
Sept. 3rd

(2) Exchange pattern
e.g., “Train Set 1  Train Set 2” and “Train Set 3 

Train Set1” exchange train set with each other

Train Set 3 on
Sept. 1st Train Set 3 on

Sept. 2nd

Train Set 3 on
Sept. 3rd

Train Set 1 on
Sept. 1st

Train Set 1 on
Sept. 2nd

Train Set 2 on
Sept. 1st

Train Set 2
on Sept. 2nd

Train Set 2 on
Sept. 3rd

Train Set 1 on
Sept. 3rd

Train Set 3 on
Sept. 1st

Train Set 3 on
Sept. 2nd

Train Set 3 on
Sept. 3rd

Normal ark Before exchange
After exchange

6：00

Train 1

7：00 8：00

Train 2

Train 3

Train 4

Train Set 1
Train Set 2

Train 5

Train
Set 3

Exchange trains.
(from dotted line to solid line)

Train Set 1
on Sept. 1st

Train Set 2
on Sept. 1st

Train Set 3 on
Sept. 1st

Train Set 1
on Sept. 1st

Train Set 2 on
Sept. 1st

Train Set 2
on Sept. 1st

Train Set 3 on
Sept. 1st

Train Set 2 on
Sept. 1st

Train Set 1
on Sept. 1st

Train Set 1
on Sept. 1st

Added for cutting patternNormal

(3) Cutting pattern
e.g., Cut Train Set s1 and 2 and exchange trains

Figure 4: Operational patterns for car schedule.

4.2 Model with operational patterns

Our algorithm takes into consideration operational patterns as weights of arks.
We set smaller weights to arks that link nodes included in patterns.
 If all three operational patterns are simultaneously considered, the ark weights
of some patterns are mixed, and no patterns are reflected in the calculated results.
To avoid this, we assumed that each category of patterns would be considered
individually.

562 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

5 Numerical experiments

We verified the effect of operational patterns and the ability of our algorithms to
satisfy constraints. The test data were based on two actual data.

(1) Small depot: including ten train units with target period of 15 days.
(2) Large depot: including 67 train units with target period of 29 days.

 We used a Pentium4 computer (3.2 GHz and 2 GB). The programming
language was VC++6.

5.1 Results from experiments

5.1.1 Satisfaction with constraints
(1) Connection constraint
We created virtual transport disorders and created car schedules that included
violations of the connection constraint using small numbers of test data. Table 1
summarizes the results obtained with our algorithm by applying this test data.
Data 1 and 2 were created by assuming large and smaller disorders.

Table 1: Results from small data test.

Rates of change from
original schedule (%)

Calculation time (s)

Data 1 15.3 173.25

Data 2 0.03 0.109

 Our algorithm could prepare a car schedule without violating the connection
constraint. The range of changes was about nine days, where the schedule was
changed in nine days. The calculation times ranged from 0.03 to 173.25 s, which
is sufficient for use in actual situations.
(2) Inspection constraint
We verified how many violations of the inspection constraint could be solved
with our algorithm by using the test data from the large depot that had not yet
been included in the inspections. We verified these using two data obtained bi-
monthly and monthly. Table 2 lists the results.

Table 2: Results from large data test.

(1) Bi-monthly (15 days)

Violations of inspections
Rate of change from
original schedule (%)

Calculation
time (s) No. of

violations
Solved rates
(%)

Original 1476 - - -
Our
results

15 98.98 84.50 310.77

Computers in Railways XIII 563

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

(2) Monthly (29 days)

Violations of inspections

Rate of change from
original schedule (%)

Calculation
time (s) No. of

violations
Solved rates
(%)

Original 1539 - - -
Our
results

90 94.15 87.84 632.47

 The rate of solved violations was high for both bi-monthly data and monthly
data, from approximately 94 to 98%. The calculation time ranged approximately
from five to nine minutes, which we think is in a feasible range.

5.1.2 Effect of operational patterns
We extracted operational patterns from an actual schedule of a large depot. We
verified the effect of operational patterns by using these patterns. The test data
were the same as those in Section 5.1.1 (1). The results are presented in what
follows.

(1) Sequence pattern
We considered a sequential train set’s numbers as sequence patterns, e.g., train
sets 1, 2, and 3 in Figure 4. This is the same as is done manually. Table 3
summarizes the results for the test of sequence patterns.

Table 3: Results for sequence patterns.

Calculation
time (s)

No. of patterns
per length of pattern*
*No. of sequential nos.

Solved rate
for inspection
violations (%)

Rate of
change
from
original
schedule
(%)

2 3 4 5 Total

Original - 127 13 60 42 242 - -

Our
results

162.22 285 38 84 51 458 96.14 63.83

 Our algorithm could solve about 96% of inspection violations. The resulting
solutions included more patterns than the original, and the rate of change from
the original schedule was improved. The calculation time was about three
minutes, which we believe is in a feasible range.

(2) Exchange pattern
We extracted four patterns that appeared more than twice in the original
schedule. Each pattern had a length of four, which means each consisted of four
sets of trains. Table 4 summarizes the results.

564 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

Table 4: Results for exchange patterns.

Calculation
time (s)

No. of patterns in each
pattern length

Solved
rate for
inspection
violations
(%)

Rate of
change
from
original
schedule
(%)

2
(partial)

3
(partial)

4
(full)

Original - 27 2 4 - -

Our results 558.89 51 8 5 92.68 42.02

 Our algorithm solved about 92% of inspection violations. More patterns were
included than in the original, and the rate of change was improved. The
calculation time was about ten minutes, which again is in a feasible range.

(3) Cutting pattern
We created test data that included connection violations by eliminating cutting
patterns from the original schedule. Table 5 lists the results.

Table 5: Results for cutting patterns.

Calculation
time (s)

No. of dates
with changed
schedules

No. of
patterns

Rate of
change from
original
schedule (%)

Original - - 10 -

Our results 36.86 1 8 0.00

 We could create a schedule with no changes from the original schedule, and
the number of dates with changed schedules was only one day. This meant the
car schedule was changed for only the day that transport disorder occurred.

6 Conclusions

We proposed a method of making a car schedule with operational patterns. We
confirmed that our algorithm could calculate feasible solutions within a feasible
calculation time. While our algorithm could solve connection constraints, some
inspection constraints were not solved. However, our algorithm could solve more
than 94% of bi-monthly inspection violations. Unsolved monthly inspections
could be planned by partly fixing and recalculating train unit schedules with
monthly inspections. Unsolved daily inspections could be manually arranged to
be carried out at unplanned stations on unplanned dates in light of actual
operations.
 Our algorithm could decrease the number of changes from the original
schedule by setting ark weights based on operational patterns. However, the

Computers in Railways XIII 565

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

results included many partial patterns and adversely affected other meaningful
weights for patterns consisting of more than three train sets like those in
exchange patterns. Therefore, we have to consider which patterns should be
applied. Our algorithm could solve solutions without connection violations
within short periods by using cutting patterns. However, because these patterns
extended the search space, we should consider limiting situations where cutting
patterns are used, e.g., cases where there are no solutions because of short
scheduling periods.

References

[1] V. Cacciani, A. Caprara, and P. Toth, “Solving a Real-World Train Unit
Assignment Problem”. In Proceedings 7th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems,
pp. 79–95, 2007.

[2] T. Otsuki, H. Aisu, and T. Tanaka, “The Solution for Constraint Satisfaction
Problems of Railway Rolling Stock Allocation”. Transactions of the
Operations Research Society of Japan, Vol. 53, pp. 30–55, 2010.

[3] K. Sato and N. Fukumura, “Freight Train Locomotive Rescheduling
Problem after Disruptions”. IPSJ TOM, Vol. 2, No. 3, pp. 97–109, 2009.

[4] D. Huisman, R. Freling, and A. P. M. Wagelmans, “Multiple-Depot
Integrated Vehicle and Crew Scheduling”. Transportation Science, Vol. 39,
No. 4, pp. 491–502, 2005.

[5] T. Sato, T. Tomiyama, T. Morita, and T. Murata, “A Lagrangian Relaxation
Method for Railway Crew and Vehicle Rescheduling of Railway Passenger
Transportation and its Application”. IEEJ Transactions on Electronics,
Information and Systems, Vol. 132, No. 2, pp. 260–268, 2012.

[6] J. F. Cordeau, F. Soumis, and J. Desrosiers, “A Benders Decomposition
Approach for the Locomotive and Car Assignment Problem”. Transportation
Science, Vol. 34, No. 2, pp. 133–149, 2000.

[7] Y. Tsuji, M. Kuroda, Y. Imoto, and E. Kondo, “Rolling Stock Planning for
Passenger Trains Based on Ant Colony Optimization”, Trans. Japan Society
Mechanical Engineers, Vol. C-76, No. 762, pp. 171–180, 2010.

566 Computers in Railways XIII

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

