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Abstract 

Railway companies have to create schedules for their rolling stock to operate a 
large number of trains by defining which route each train runs on and when 
maintenance is done. This scheduling task requires a lot of time and highly-
skilled operators, called rolling stock managers, because of numerous 
complications. We developed an algorithm to help them that automatically 
creates a schedule for rolling stock during disruptions. We applied the Dijkstra 
method, which is a mathematical algorithm for searching efficient paths from a 
network model like the routes taken by sales staff. Our algorithm takes into 
consideration 1) maintenance cycles where railway companies are required by 
law to periodically inspect the condition of all trains. It schedules maintenance to 
continue these cycles. It also takes into account 2) operational patterns through 
scheduling patterns to create schedules that can compete with manual schedules. 
These patterns can represent experiences by rolling stock managers like the 
rotations of train routes. We carried out numerical experiments using real data 
(small and large numbers) at two train depots of a Japanese railway company. 
The small ones included ten train sets and a bi-monthly schedule. The large ones 
included 67 train sets and a monthly schedule. We generated experimental data 
on virtual disruptions. Our algorithm could mostly generate feasible schedules 
both from the small and large numbers of data, between 0.02 and 173.25 s, and 
in 632.47 s. Slight deviations in maintenance cycles were involved in some of 
the large ones. These results indicate that our algorithm could be feasible for real 
situations, even though satisfaction with constraints and calculation time should 
be improved to achieve highly interactive rescheduling operations. 
Keywords: rolling stock operation, scheduling, Dijkstra method. 
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1 Introduction 

1.1 Rolling stock operations at railway companies 

Japanese laws require railway companies to regularly inspect their rolling stock 
at stated intervals to ensure safe transportation, which are based on running 
distances and inspection periods. Each railway company manages their rolling 
stock by creating schedules of rolling stock operations and checking the results. 
The schedules for rolling stock operations define the assignments of cars to 
trains and the dates of inspections. 
     The schedules for rolling stock operations are based on train timetables. Once 
transport disorders occur, the schedules are changed. As a result, the running 
distances of individual trains differ from those that are planned, and some trains 
finish operations at unscheduled stations. Railway companies have to recreate 
their schedules in these cases for the days after transport disorders occurred. 
     Rescheduling requires a lot of time because these schedules are manually 
prepared to ensure consistency with relevant departments such as departments 
for inspection, those for planning train timetables, and those for crew 
management. The rate of change in schedules has to be low to reduce the time 
and labor spent in rescheduling. 
     We propose an algorithm for rescheduling rolling stock operations in this 
paper that takes into consideration operational patterns to reduce the number of 
periods with changes. 

1.2 Existing research 

There has been some research regarding algorithms for scheduling rolling stock 
operations for passenger or freight trains. This research has supported the 
optimization of schedules such as minimizing both the number of seats and the 
number of inspections [1–3]. They have proposed several algorithms to solve 
scheduling problems such as hybrid methods of column generation and 
Lagrangian relaxation [1, 3–5], Benders relaxation [6], heuristics methods like a 
mixture of greedy and backtrack [2], and meta-heuristics [7]. These researchers 
have aimed at automatically calculating optimal or feasible solutions. Our aim 
was to calculate a feasible solution with operational patterns to reduce the 
number of differences from original schedules. 

2 Requirements of schedules for rolling stock operations 

2.1 Schedules for rolling stock operations 

The schedules for rolling stock operations are normally created in train units. A 
train unit means a set of merged cars, which are not divided except in special 
cases like those in breakdowns. The first step in assigning train units is to define 
sets of trains that are assigned the same train unit (operation schedule). After 
that, train units are respectively assigned to the sets of trains, and dates of 
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inspections are defined in regular cycles (car schedules). While operation 
schedules are created each day, car schedules are created bi-monthly or monthly. 
Figure 1 shows an example of schedules for rolling stock operations. 
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Figure 1: Example of Schedules for rolling stock operations. 

     Our target was to recreate a car schedule after a transport disorder had 
occurred. 

2.2 Constraints 

There are three constraints that should be considered in car schedules. 
 
(1) Connection constraint 
This constraint limits sequences of a set of trains assigned to the same train unit. 
It restricts the sequences to ones that ensure places are connected between dates 
that are next to each other. Violation of this constraint means the train unit starts 
to run from a station that is different from the station it arrived at on the previous 
day. In such cases, a deadhead train is needed to complete the schedule. A 
deadhead train causes changes in relevant schedules with train timetables and 
planning for crews and it wastes additional electricity. To avoid additional 
deadhead trains, car schedules should retain the sequences of places. 
 
(2) Inspection constraint 
This constraint keeps cycles of inspections consistent. There are several kinds of 
inspections, and each inspection has a different cycle. Although we deal with 
monthly inspections and daily inspections in this paper, this does not mean that 
our algorithm is limited to these inspections. Daily inspections are the simplest 
of all our inspections. The main parts of cars, such as pantographs and axletrees, 
are visually confirmed at car depots. The cycle is normally defined to be between 
three and five days. Monthly inspections include e.g., strict visual confirmations, 
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inspections under the floor, the grinding of axletrees, and the exchange of 
consumables. The cycle is normally defined within 30 days. 
 
(3) Fewer differences from original schedule 
This constraint is considered to reduce the range of influences affecting 
rescheduling. Maintenance, such as daily inspections and work on shunting, are 
planned on the basis of car schedules. Reducing the number of differences from 
the original schedule leads to reducing the range of influences on this task. 

3 Model and algorithm 

3.1 Model 

We represent a car schedule as a network model, where nodes represent a set of 
trains included in a target period that are on the schedule and arks represent 
connection constraints, which means arks are generated between nodes that can 
be linked under connection constraints. In addition, if a train unit is stocked at a 
car depot for a whole day, this operation is represented as a node, which is the 
same as a set of trains. Each node has four attributes of the date when the set of 
trains will run, the first station where the set of train will start to run, the last 
station where the set of trains will finish running for a whole day, and the 
possibility of daily inspections. The connection constraint, which was mentioned 
in Section 2, is considered to represent arks of the network model. Therefore, the 
assignment of a train unit can be represented as a path of the network model. 
Figure 2 shows an example of this network model. 
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・・・
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Train Set 2

Train Set 1
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Figure 2: Network model for car schedule. 

     Preparing a car schedule is a problem that extracts a set of paths from the 
network model. Our algorithm takes into account three constraints when solving 
this problem, where the constraints are defined on the basis of the constraints 
mentioned in Section 2 and the characteristics of a car schedule. 
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(1) Each node is included in only one path. 
Each set of trains is defined on the assumption that only one train unit is assigned 
to one set. Paths cannot include the same nodes between each other to deal with 
this assumption. When some train units are merged to assign one train together, 
as many nodes that represent the same train are added to the network model as 
the number of merged train units. 

 1.iji N x
  (1) 

(2) Each node is included in one path. 
Even if a train unit does not run as trains for a whole day, train companies plan 
this case as an operation “reserve”. For example, a train set is stocked at a train 
depot when the train set is planned for inspection the next day, or to equalize 
mileage. Therefore, all train units are assigned to trains or reserve operations. 
This means each train unit is definitely assigned to one path. 

 1.ijj T a
  (2) 

(3) All paths include more than one inspection node in a consistent cycle. 
If a set of trains includes a sufficient time interval to execute inspection, the node 
representing the set of trains has an attribute that means the inspection is 
practical. Our algorithm makes each path include such nodes within the 
inspection cycle. 
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3.2 Algorithm 

We describe the process of extracting a set of paths from a network model that 
satisfies constraints in this section. 
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     The connection and inspection constraints when creating a car schedule need 
to be considered as mentioned in Section 2. Reducing the number of changes, 
which was mentioned as the third constraint in Section 2, is considered to be the 
objective of our algorithm because this constraint is less important than the other 
two. Considering the two constraints, i.e., the connection and inspection 
constraints simultaneously may require more time than considering each 
constraint individually. In addition, daily inspections, which are the most 
common, can be completed at unplanned dates in emergency situations like those 
when transport disorders occur. Our algorithm takes the two constraints into 
account individually giving priority to the calculation time to obtain a feasible 
solution. First, our algorithm calculates a feasible solution under the connection 
constraint. After that, it modifies the solution under the inspection constraint as 
effectively as possible. Figure 3 outlines the flow to extract a set of paths. 
 

Start

Step 1. Create a network model

Step 2. Select one train unit

Step 3. Solve a solution under connection 
constraint

Step 4. Set daily inspection

Step 5. Solve a solution under inspection 
constraint

Step 6. Modify the network model

All inspections can be set

Finish

All trains are processed 

Yes
No

Yes
No

 

Figure 3: Flowchart for searching route sets from network model. 

Step 1. Create a network model: A network model is created on the basis of a 
timetable and a car schedule. The timetable reflects a transport disorder. 
Step 2. Select one train unit: One train unit is selected from unprocessed train 
units. 
Step 3. Find a solution under the connection constraint: A path is explored under 
the constraints mentioned in Section 3 as constraints (1) and (2). This exploring 
process uses the Dijkstra method that extracts a path from a network model 
minimizing the total weight of arks. To reduce the number of changes from the 
original schedule, arks between the same nodes with those of the original 
schedule are given smaller weights, which take into consideration constraint (3) 
mentioned in Section 3. 
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Step 4. Set daily inspections: The path explored in Step 3 is verified as to 
whether inspections can be set within consistent cycles. 
Step 5. Solve a solution under the inspection constraint: If no inspection can be 
set in Step 4, the path for the solution to the train unit is explored again. First, 
another path is explored from the present network model. The previous solution 
is canceled when no solution is available. This means that nodes included in the 
solution of another train unit, which was previously calculated, are added to the 
present network model (these nodes were excluded from the network model in 
Step 6). After that, the solution is explored again. The number of cancelations is 
limited to a few times each train unit to avoid excessively long calculation times. 
Step 6. Modify the network model: Nodes included in the path explored in Step 5 
are excluded from the present network model. 
     The process from Steps 2 to 5 is repeated until solutions to all train units are 
calculated or there are no more nodes in the network model. 

4 Operational patterns 

4.1 Categories of operational patterns 

We extended the approach mentioned in Section 3 to reflect operational patterns 
in the car schedule. The operational patterns provide regularity to the trains 
assigned to each train unit. These patterns are used in common practice when a 
car schedule is manually prepared. Our algorithm takes into account three 
patterns that appear in actual car schedules. 

 
(1) Sequence pattern: This pattern defines sequences of sets of trains that are 

continuously assigned to the same train unit. Figure 4-(1) shows an 
example of this pattern, where sequence pattern means that train sets 1, 2, 
and 3 were continuously assigned to the same train unit on September 1, 
September 2, and September 3. 
 

(2) Exchange pattern: This pattern defines combinations of sets of trains that 
exchange train units assigned to them. Figure 4-(2) shows an example of 
this pattern, where exchange pattern means the sequence from train set 1 to 
2 and the sequence from train set 3 to 1 can be exchanged. The sequence 
from train set 1 to 2 is changed to the sequence from train set 1 to 1 by 
following this pattern, and the sequence from train set 3 to 1 is changed to 
the sequence from train set 3 to 2. 
 

(3) Cutting pattern: This pattern defines combinations of sets of trains that 
exchange train units in one day. Figure 4-(3) shows an example of this 
pattern, where train sets 1 and 2 exchange trains included in each other. 
Train set 1 in the original schedule include trains 1 and 4, and train set 2 
include trains 2 and 3. Train sets 1 and 2 exchange trains 4 and 3 by 
following this pattern.  
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While the other patterns do not change combinations of trains in one day, 
this pattern changes them. This leads to increased candidates for 
connection, and the possibility of success for exploration is increased. 
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Figure 4: Operational patterns for car schedule. 

4.2 Model with operational patterns 

Our algorithm takes into consideration operational patterns as weights of arks. 
We set smaller weights to arks that link nodes included in patterns.  
     If all three operational patterns are simultaneously considered, the ark weights 
of some patterns are mixed, and no patterns are reflected in the calculated results. 
To avoid this, we assumed that each category of patterns would be considered 
individually. 
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5 Numerical experiments 

We verified the effect of operational patterns and the ability of our algorithms to 
satisfy constraints. The test data were based on two actual data. 

(1) Small depot: including ten train units with target period of 15 days. 
(2) Large depot: including 67 train units with target period of 29 days. 

     We used a Pentium4 computer (3.2 GHz and 2 GB). The programming 
language was VC++6. 

5.1 Results from experiments 

5.1.1 Satisfaction with constraints 
(1) Connection constraint 
We created virtual transport disorders and created car schedules that included 
violations of the connection constraint using small numbers of test data. Table 1 
summarizes the results obtained with our algorithm by applying this test data. 
Data 1 and 2 were created by assuming large and smaller disorders. 

Table 1:  Results from small data test. 

  
Rates of change from 
original schedule (%) 

Calculation time (s) 

Data 1 15.3 173.25 

Data 2 0.03 0.109 
 
     Our algorithm could prepare a car schedule without violating the connection 
constraint. The range of changes was about nine days, where the schedule was 
changed in nine days. The calculation times ranged from 0.03 to 173.25 s, which 
is sufficient for use in actual situations. 
(2) Inspection constraint 
We verified how many violations of the inspection constraint could be solved 
with our algorithm by using the test data from the large depot that had not yet 
been included in the inspections. We verified these using two data obtained bi-
monthly and monthly. Table 2 lists the results.  

Table 2:  Results from large data test. 

(1) Bi-monthly (15 days) 

 

Violations of inspections 
Rate of change from 
original schedule (%) 

Calculation 
time (s) No. of 

violations 
Solved rates 
(%) 

Original 1476 - - - 
Our 
results 

15 98.98 84.50 310.77 
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(2) Monthly (29 days) 

  
Violations of inspections 

Rate of change from 
original schedule (%) 

Calculation 
time (s) No. of 

violations 
Solved rates 
(%) 

Original 1539 - - - 
Our 
results 

90 94.15 87.84 632.47 

 
     The rate of solved violations was high for both bi-monthly data and monthly 
data, from approximately 94 to 98%. The calculation time ranged approximately 
from five to nine minutes, which we think is in a feasible range. 

5.1.2 Effect of operational patterns 
We extracted operational patterns from an actual schedule of a large depot. We 
verified the effect of operational patterns by using these patterns. The test data 
were the same as those in Section 5.1.1 (1). The results are presented in what 
follows. 
 
(1) Sequence pattern 
We considered a sequential train set’s numbers as sequence patterns, e.g., train 
sets 1, 2, and 3 in Figure 4. This is the same as is done manually. Table 3 
summarizes the results for the test of sequence patterns. 

Table 3:  Results for sequence patterns. 

 
Calculation 
time (s) 

No. of patterns  
per length of pattern* 
*No. of sequential nos. 

Solved rate  
for inspection 
violations (%)

Rate of 
change 
from 
original 
schedule 
(%) 

2 3 4 5 Total

Original - 127 13 60 42 242 - - 

Our 
results 

162.22 285 38 84 51 458 96.14 63.83 

 
     Our algorithm could solve about 96% of inspection violations. The resulting 
solutions included more patterns than the original, and the rate of change from 
the original schedule was improved. The calculation time was about three 
minutes, which we believe is in a feasible range. 
 
(2) Exchange pattern 
We extracted four patterns that appeared more than twice in the original 
schedule. Each pattern had a length of four, which means each consisted of four 
sets of trains. Table 4 summarizes the results. 
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Table 4:  Results for exchange patterns. 

  
Calculation 
time (s) 

No. of patterns in each 
pattern length 

Solved 
rate for 
inspection 
violations 
(%) 

Rate of 
change 
from 
original 
schedule 
(%) 

2 
(partial) 

3 
(partial) 

4 
(full) 

Original - 27 2 4 - - 

Our results 558.89 51 8 5 92.68 42.02 

 
     Our algorithm solved about 92% of inspection violations. More patterns were 
included than in the original, and the rate of change was improved. The 
calculation time was about ten minutes, which again is in a feasible range. 
 
(3) Cutting pattern 
We created test data that included connection violations by eliminating cutting 
patterns from the original schedule. Table 5 lists the results. 

Table 5:  Results for cutting patterns. 

 
Calculation 
time (s) 

No. of dates 
with changed 
schedules 

No. of 
patterns 

Rate of 
change from 
original 
schedule (%) 

Original - - 10 - 

Our results 36.86 1 8 0.00 
 
     We could create a schedule with no changes from the original schedule, and 
the number of dates with changed schedules was only one day. This meant the 
car schedule was changed for only the day that transport disorder occurred. 

6 Conclusions 

We proposed a method of making a car schedule with operational patterns. We 
confirmed that our algorithm could calculate feasible solutions within a feasible 
calculation time. While our algorithm could solve connection constraints, some 
inspection constraints were not solved. However, our algorithm could solve more 
than 94% of bi-monthly inspection violations. Unsolved monthly inspections 
could be planned by partly fixing and recalculating train unit schedules with 
monthly inspections. Unsolved daily inspections could be manually arranged to 
be carried out at unplanned stations on unplanned dates in light of actual 
operations. 
     Our algorithm could decrease the number of changes from the original 
schedule by setting ark weights based on operational patterns. However, the 
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results included many partial patterns and adversely affected other meaningful 
weights for patterns consisting of more than three train sets like those in 
exchange patterns. Therefore, we have to consider which patterns should be 
applied. Our algorithm could solve solutions without connection violations 
within short periods by using cutting patterns. However, because these patterns 
extended the search space, we should consider limiting situations where cutting 
patterns are used, e.g., cases where there are no solutions because of short 
scheduling periods. 

References 

[1] V. Cacciani, A. Caprara, and P. Toth, “Solving a Real-World Train Unit 
Assignment Problem”. In Proceedings 7th Workshop on Algorithmic 
Approaches for Transportation Modeling, Optimization, and Systems, 
pp. 79–95, 2007. 

[2] T. Otsuki, H. Aisu, and T. Tanaka, “The Solution for Constraint Satisfaction 
Problems of Railway Rolling Stock Allocation”. Transactions of the 
Operations Research Society of Japan, Vol. 53, pp. 30–55, 2010. 

[3] K. Sato and N. Fukumura, “Freight Train Locomotive Rescheduling 
Problem after Disruptions”. IPSJ TOM, Vol. 2, No. 3, pp. 97–109, 2009. 

[4] D. Huisman, R. Freling, and A. P. M. Wagelmans, “Multiple-Depot 
Integrated Vehicle and Crew Scheduling”. Transportation Science, Vol. 39, 
No. 4, pp. 491–502, 2005. 

[5] T. Sato, T. Tomiyama, T. Morita, and T. Murata, “A Lagrangian Relaxation 
Method for Railway Crew and Vehicle Rescheduling of Railway Passenger 
Transportation and its Application”. IEEJ Transactions on Electronics, 
Information and Systems, Vol. 132, No. 2, pp. 260–268, 2012. 

[6] J. F. Cordeau, F. Soumis, and J. Desrosiers, “A Benders Decomposition 
Approach for the Locomotive and Car Assignment Problem”. Transportation 
Science, Vol. 34, No. 2, pp. 133–149, 2000. 

[7] Y. Tsuji, M. Kuroda, Y. Imoto, and E. Kondo, “Rolling Stock Planning for 
Passenger Trains Based on Ant Colony Optimization”, Trans. Japan Society 
Mechanical Engineers, Vol. C-76, No. 762, pp. 171–180, 2010. 

 

566  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press




