
Process mining of train describer event data 
and automatic conflict identification  

P. Kecman & R. M. P. Goverde 
Department of Transport and Planning, 
Delft University of Technology, The Netherlands 

Abstract 

Data records from train describer systems are a valuable source of information 
for analysing railway operations performance and assessing railway timetable 
quality. This paper presents a process mining tool based on event data records 
from the Dutch train describer system TROTS, including algorithms developed 
for the automatic identification of route conflicts with conflicting trains, arrival 
and departure times/delays at stations, and train paths on track section and 
blocking time level. Visualisations of the time-distance diagrams and blocking 
time diagrams support the analysis of incidents, track obstructions, disruptions, 
and structural errors in the timetable design.  
Keywords: train describers, realisation data, route conflict, delay, blocking time 
diagram, timetable quality, operations performance analysis. 

1 Introduction 

Improving the performance of railway infrastructure and train services is the core 
business of railway infrastructure managers and railway undertakings. Train 
delays decrease capacity, punctuality, reliability and safety, and should be 
prevented as much as possible.  
     Dense railway operations require feedback of operations data to improve 
planning and control. Typically, train delays at stations are monitored and 
registered online using train detection, train describers, and timetable databases, 
but the accuracy is insufficient for process improvements, and in particular, 
delays due to route conflicts are hard to recognize from delays at stations. 
Accurate data on the level of track sections and signal blocks are required to gain 
a better understanding of the realized train paths and conflicts between them.  

Computers in Railways XIII  227

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press

doi:10.2495/CR120201



     Train describer records are a main source of infrastructure event data such as 
occupations and releases of track sections and aspect changes of signals. These 
infrastructure events can be matched to train number events that are also stored 
in these files to recover the realized train paths on track section level. Moreover, 
the realized blocking time diagrams can be derived by adding a process model of 
the signalling logic. This process mining approach has been implemented for the 
log files of the Dutch train describer system TROTS. The resulting railway 
operations performance analysis tool recovers and visualizes the realized train 
paths, blocking times, and path conflicts, and thus provides essential information 
for the analysis of railway operations that can be used for fine-tuning the railway 
timetable and operational processes. The tool supports both tabular output for 
statistical analysis, such as discussed in Goverde and Meng  [1], and 
visualisations of the realized time-distance and blocking time diagrams with 
high-lighted train path conflicts.  
     In earlier work, Daamen et al.  [2] developed algorithms for automatic route 
conflict identification based on data records of the Dutch train describer system 
TNV, which were implemented in the tool TNV-conflict. Goverde and Meng  [1] 
developed the tool TNV-Statistics for a detailed statistical analysis of train 
realisation data based on the output files of TNV-Conflict. The TNV system was 
recently replaced by the new train describer system TROTS which contains an 
essential new approach to train number steps, and this came with a new format 
for the log files. In particular, train number steps are no longer given with respect 
to a route block to a next signal, but at section level. This means that a train 
number step no longer ‘predicts’ to which signal the train is heading, as was 
customary with TNV, and therefore we cannot just look ahead at the signal 
aspect of the signal at the end of a block to identify a conflict. Therefore, the 
algorithms described in Daamen et al.  [2] had to be modified in a way described 
in the present paper. Moreover, several improvements have been implemented 
such as interpolating blocking times over non-logged signals so that route 
conflict identification is applicable over entire corridors, including ‘dark 
territories’ with aggregated track sections. The output of the new tool has the 
same format as that of TNV-Conflict by which TNV-Statistics is still applicable. 
Other approaches to train delay data mining include Conte  [3] and Flier et al.  [4] 
for determining systematic dependencies between delays in Germany and 
Switzerland, respectively, and Cule et al.  [5] for identifying frequent delay 
patterns in Belgium. 
     The remainder of the paper is structured as follows. The Dutch train describer 
log files and their data structure are explained in Section  2. Section  3 explains 
the main algorithm and subroutines of the tool, followed by a case study with a 
description of the GUI in Section  4. Section  5 gives a brief summary and 
presents further application of train describer data in the framework of on-going 
research about model-predictive railway traffic management  [6].  

228  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



2 Train describer systems 

Train describer systems keep track of train positions based on train numbers and 
messages received from elements of the signalling and interlocking systems 
(sections, switches and signals)  [7]. One of the tasks of train describers is 
logging the generated train number messages and the incoming infrastructure 
element messages, resulting in chronologically ordered lists of infrastructure and 
train number messages.  

2.1 The Dutch train describer TROTS 

In the Dutch train describer system TROTS, the train steps are recorded on the 
level of track sections, with both a message when a new track section is occupied 
by a train and when a track section is released by a train. Hence, train number 
step messages are coupled to track section messages.  
     The Dutch railway network has been divided into multiple TROTS areas 
which each comprise one or more major station areas with complex topologies 
and 30–40 km of surrounding railway infrastructure. In order to reconstruct the 
train traffic over multiple TROTS areas it is necessary to merge the 
corresponding log files. TROTS log files are archived per day and area in large 
files of ASCII format of approximately 75 MB.  
     Infrastructure messages contain the following information: timestamp, event 
code, element type (section, signal, point), element name, and new state 
(occupied/released, stop/go, left/right). The train number step messages contain 
amongst others a timestamp, event code, train number, and a sequence of all 
occupied track sections. Each successive train number step message contains 
either a new occupied track section at the front or a released track section at the 
rear. The event code of a train number step corresponds to a section message 
with the same event code. This coding is used to match a message about a 
section occupation or release with a message of a train number step. 

2.2 Shortcomings in TROTS log files 

There are several issues in the TROTS log files that represent a potential source 
of inaccuracy and complicate performance analysis. The system architecture  [8] 
reveals that infrastructure messages and train number step messages are 
generated by different components of the system which sometimes results in a 
significant difference between the timestamps of corresponding messages. 
Experiments show delays of up to seven seconds of the train number step 
messages. In order to avoid possible inconsistencies, the developed tool does not 
use the timestamps of the train number step messages but only the ones of the 
corresponding infrastructure element messages. 
     Furthermore, infrastructure messages of a signal aspect change to ‘stop’ 
cannot be coupled directly to any train number step or section occupation 
message. In order to overcome this, an additional input file is created in the form 
of a list of all signals together with the first section they protect by data mining 
the files in a pre-processing step. We use this input in the main algorithm to 

Computers in Railways XIII  229

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



identify the train number that caused the signal aspect change via the 
corresponding section that got occupied. 
     Other sources of inaccuracy are the automatic block signals on the open track 
which are not logged. Without intermediate logged signals, an open track 
between two stations looks as one block from the exit signal at the station of 
departure to the home signal at the station of arrival, and headway conflicts 
could not be identified. Moreover, open tracks may contain aggregated track 
sections which are occupied and released as one. We therefore defined an 
additional input file containing a list of automatic block signals on the open 
tracks together with the corresponding (aggregated) sections listed by individual 
sections and their lengths. If a non-logged signal is at the boundary of two 
(aggregated) sections then the occupation of the following (aggregated) section is 
used as stop aspect event time. Otherwise, three-aspect two-block signalling 
logic is simulated to estimate aspect changes of non-logged signals on 
aggregated sections. In this case, the event time of the stop aspect change is 
estimated by the occupation time of the corresponding protected section, which 
is derived as a fraction of the running time of the train over the aggregated 
section proportional to the ratio of the distance to the signal and the length of the 
aggregated section.  

3 Automatic route conflict identification 

Signal passages are events that initiate processes such as blocking a part of the 
infrastructure and running over a block. Each complete train run can thus be 
represented as a graph built online by sweeping through the log file. Also 
conflicts can be identified simultaneously by determining relationships between 
events. This section presents the main algorithm that passes through the TROTS 
log file once to reconstruct the movements of all trains that operated in the 
corresponding area whilst simultaneously deriving a list of all route conflicts that 
occurred.  
     The following input is used: 

 TROTS log file 
 Infrastructure lists (signals with protected sections, aggregated sections 

and lengths) 
 Operational timetable 
 List of platform track sections.  

     The first two inputs were explained in the previous section and the latter two 
are necessary to derive delays from the realized event times, handle route 
conflicts of departing trains from stations, and to distinguish between long 
occupation times of platform track sections in stations (due to scheduled stops) 
and other sections (due to e.g. infrastructure or vehicle failures).  
     An object-oriented approach is used to store the relevant data from the log 
files in infrastructure and train number objects which enables the algorithm to 
revisit the objects, and use and update the information therein  [2]. Each section, 
signal, and train in the log file is an object, attributed by a chronologically sorted 
list of activities. The algorithm visits all messages and for each signal, section of 

230  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



train number message, the corresponding objects are updated with a time stamp 
and the train number (for section/signal objects) or infrastructure element id (for 
train objects).  
     The algorithm is implemented in Matlab and based on process mining, a 
concept of analysing processes based on event logs  [9]. Blocking time theory 
 [10] and the operational timetable provide the logic for building the process 
model.  

3.1 The main algorithm 

The main loop is initiated when the algorithm comes across a message reporting 
a section occupation. Figure 1 shows a flowchart of the main loop with 
embedded subroutines which will be explained in Section  3.2. After all objects 
have been updated, the first branching makes a distinction between sections 
protected by a signal (first section in a block) and others. The second decision 
level initiates different subroutines depending on whether the train is departing 
from a station or not. Registered conflicts with the identified hindering train are 
being stored in the output closedConflict. On the other hand, registered conflicts 
with an unidentified hindering train, are stored in the list openConflict which is 
used to identify hindering trains as the train progresses along the protected block 
section after the conflict.  
 

 

Figure 1: Main conflict identification loop. 

Computers in Railways XIII  231

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



3.2 Subroutines 

This subsection gives a description of the subroutines that capture the main logic 
of the process mining method for automatic conflict registration. Figure 2 depicts 
a small part of an example network, which is used to illustrate the subroutines. 
The example network contains three signals (S1, S2, S3), six track sections 
(TS1-TS6) and a train that has just entered TS4. 
 

 

Figure 2: Illustrative example of a part of some railway network. 

3.2.1 Register route conflict (registerConf) 
A route conflict occurs when a train movement is restricted by a stop signal 
because the protected block section is occupied by another train. The subroutine 
registerConf checks the aspect shown by the signal at the end of the block at the 
time when the train was at the sight distance of the signal protecting the block. 
When the train passes signal S2 (Figure 2), the subroutine compares the last 
release time (change to ‘go’ aspect) ݐrel

ௌଶ of S2, with the time ݐsight
ௌଵ  that the train 

was at the sight distance of signal S1. For the latter time we subtract a constant 
sight and reaction time of 12 s from the passing time of S1  [10]. A conflict has 
occurred when the following condition has been met:  

 if  trel
S2  ൐ tsight

S1  ՜conflict registered (1) 

3.2.2 Identify hindering train (identifyHindering) 
As the hindered train progresses along the block protected by the signal of 
conflict (S2), identifyHindering compares the previous release time ݐrel

்ௌ௜ of each 
section belonging to the block (TS4, TS5, TS6 in Figure 4) with the time that the 
hindered train was at sight distance from the approach signal before the signal of 
conflict (S1, Figure 4). The train number that released the section for which (2) 
holds is the hindering train: 

 if  ݐrel
்ௌ௜ ൐ sightݐ

ௌଵ , ݅ א ሼ4,5,6ሽ ՜ hindering train registered (2) 

3.2.3 Get event times (getEventTimes) 
This routine derives the arrival and departure times from TROTS logfiles. When 
a train passes an exit signal after a scheduled stop, getEventTimes is initiated. It 
determines the period of standstill as the longest time gap between successive 
track section (occupied and release) messages of the relevant train. The time of 
the last section message before the standstill is set as the arrival time and the 
time of the first section message after the standstill is the departure time. 

232  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



Note that the error of this arrival (departure) time estimate depends on the 
number of platform track sections and the distance between the stop location of 
the rear (front) of the train and the used section border. 

3.2.4 Detect departure conflict (registerDepartureConf) 
After the arrival and departure times have been derived, the 
registerDepartureConf subroutine checks whether the departing train was a 
victim in a route conflict. We assume here that the departing train was hindered 
if the exit signal was showing ‘stop’ at the scheduled departure time (if the train 
had no arrival delay) or after the minimum dwell time has passed since the 
arrival time (if the train arrived with a delay). 

 if  ݐ୰ୣ୪
ୣ୶୧୲ ൐ max൫ݐarr ൅ dwellݐ

min , depݐ
sched൯ ՜ conflict registered (3) 

     This subroutine lists all candidates for outbound route conflicts. Extended 
dwell times in stations can not directly be explained by route conflicts. In order 
to exclude the trains that waited for a feeder train to realize a connection, or the 
ones that had extended dwell time for some other reason, additional information 
from signallers and dispatchers is necessary. 

4 Case study 

This section illustrates the application of the presented algorithm on one day of 
traffic (2nd April 2010) in the TROTS areas of The Hague and Rotterdam. The 
algorithm sweeps through the merged log files of the two areas and reconstructs 
the realized train paths of 2048 trains on the level of track sections.  Moreover, 
all occupation times of 1396 track sections and all blocking times of 733 blocks 
are determined, as well as the aspect changes of 624 signals and the arrival and 
departure time estimates of all trains at 21 stations. Finally, 1011 route conflicts 
were registered. 

4.1 Graphical user interface 

In order to simplify the analysis of this output, a GUI was created (Figure 3). The 
left part of the GUI contains tabbed panels for loading data (top left panel), 
visualisation control (top right) and displaying results in tables (lower panel). 
The right part of the GUI is reserved for the visualisation of traffic in either time-
distance or blocking time diagrams. The tabbed panel for loading data enables 
the user to either load the raw data and start the algorithm or load already 
processed data and display the results. In the lower tabbed panel the user can 
choose which results to display. In the tab Trains (Figure 4), a train line can be 
selected from the popup menu which enables selecting a train from the chosen 
line. We can then select the whole train path or a part of it by selecting a start 
and end station.  
     The results are then displayed in the tables on the left and the visualisation 
panel on the right. The selected part of the train route is visualized together with 
all other trains that operated on the selected corridor 15 min before and after the 
 

Computers in Railways XIII  233

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



 

Figure 3: Graphical user interface. 

 

 

Figure 4: Train selection panel. 

234  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



selected train. The tables are the list of conflicts in which the selected train 
participated, the running times on all sections, the blocking times, and actual 
arrival and departure times. 
     The panel Infrastructure (Figure 5) enables the user to choose the corridor 
and the time interval and get the corresponding list of conflicts, list of sections, 
signals, blocks, and stations that were utilized by trains on the corridor within the 
selected time interval. Selection of the infrastructure element from the 
corresponding popup menu displays all the state changes of that element with the 
associated train number and time instants (in seconds from midnight).  
     The visualisation control panel (upper right panel Figure 3) enables the user 
to switch between the blocking time diagram and time-distance diagram of 
traffic on the selected corridor and time interval. Also it is possible to turn on/off  
 
 

 

Figure 5: Infrastructure selection panel. 

Computers in Railways XIII  235

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



the zoom and pan tools and rotate the axis of the diagrams. Finally the selection 
of the checkbox Scheduled also visualises the scheduled train paths.  
     Figure 6 shows the time-distance diagram on the busy corridor between The 
Hague HS and Rotterdam in the Netherlands between 9:00 and 9:40 A.M. The 
number of tracks between the stations is indicated as well as the conflicts (red 
squares on the hindered train path at the location of the signal of conflict). 
Intercity trains are presented in blue colour and local trains in magenta. 
 

 

Figure 6: Time distance diagram. 

     Figure 7 displays the corresponding blocking time diagram for one direction 
that appears after selecting the appropriate radio button on the visualisation 
control panel. Overlaps in blocking times indicating conflicts are denoted by a 
red colour (or very dark in grayscale). Note that trains on parallel tracks of four-
track lines may overtake each other. Blocking times that appear to be 
overlapping but are not shown in red (darker) are parallel processes without 
conflict. 
 

236  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



 

Figure 7: Blocking time diagram. 

5 Summary and outlook 

In this paper we presented a tool for automatic conflict identification based on 
train describer data and illustrated its usefulness for identifying systematic delay 
dependencies and analysing delays during incidents and severe disruptions. The 
tool is compatible with the Dutch train describer system TROTS. Applicability 
for other train describer systems strongly depends on their data structure.   
     Further developments are mainly directed towards automatic analysis by 
providing useful statistical indicators for structural flaws in the timetable, as well 
as detecting severe disruptions and identifying primary delays, see also Goverde 
and Meng  [1].  
     Another stream of research within mining and analysis of train realisation 
data, focuses on deriving accurate predictions of process times within the 
monitoring and short-term prediction component of a model-predictive controller 
for railway traffic management  [6]. We aim at exploiting advanced statistical and 

Computers in Railways XIII  237

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



machine learning methods to capture complex dependencies between process 
times in heavily utilized railway networks. The developed tool presented in this 
paper is the basis for this on-going work. 

Acknowledgement 

This paper is a result of the research project funded by the Dutch Technology 
Foundation STW: “Model-Predictive Railway Traffic Management” (project 
no. 11025). 

References 

[1] Goverde, R.M.P. and Meng, L., Advanced monitoring and management 
information of railway operations. Journal of Rail Transport Planning and 
Management, article in press, 2012. 

[2] Daamen, W., Goverde, R.M.P. and Hansen, I.A., Non-discriminatory 
automatic registration of knock-on train delays. Networks and Spatial 
Economics, 9(1), pp. 47–61, 2009. 

[3] Conte, C., Identifying Dependencies among Delays, PhD thesis, Georg-
August Universität Göttingen, 2007. 

[4] Flier, H., Gelashvili, R., Graffagnino, T. and Nunkesser, M., Mining 
railway delay dependencies in large-scale real-world delay data. In: R.K. 
Ahuja, R.H. Möhrung and C.D. Zaroliaglis (Eds.), Robust and Online 
Large-Scale Optimization, Lecture Notes in Computer Science, vol. 5868, 
Springer: Berlin, pp. 354–368, 2009. 

[5] Cule, B., Goethals, B., Tassenoy, S. and Verboven, S., Mining train delays. 
Proceedings of the 4th International Seminar on Railway Operations 
Modelling and Analysis (RailRome 2011), Rome, Italy, 2011.  

[6] Kecman, P., Goverde, R.M.P. and Van den Boom, T.J.J., A model-
predictive control framework for railway traffic management. Proceedings 
of the 4th International Seminar on Railway Operations Modelling and 
Analysis (RailRome 2011), Rome, Italy, 2011. 

[7] Exer, A., Rail traffic management. In: C. Bailey (Ed.), European Railway 
Signalling, IRSE, A and C Black: London, pp. 311–342, 1995. 

[8] ProRail, TROTS protocol – interface design description (in Dutch), Utrecht, 
2008. 

[9] Van der Aalst, W.M.P., Process Mining: Discovery, Conformance and 
Enhancement of Business Processes, Springer: Heidelberg, 2011. 

[10] Hansen, I.A. and Pachl, J. (Eds.), Railway Timetable and Traffic: Analysis, 
Modelling, Simulation, Eurailpress: Hamburg, 2008. 

 

238  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press




