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Abstract 

Signalling systems are critical in ensuring the safe movement of trains within a 
network. The choice of signalling system employed on a particular line has a 
direct impact on the journey time and hence the capacity of the line.  Computer 
simulations provide a viable method for evaluating and analysing the 
performance of signalling systems.  
     This paper describes the development of a multi-train simulator in which five 
different signalling systems are simulated on a common section of high-speed 
line operating with two trains. The simulator is used to compare train 
performance, including differences in journey time and train energy 
consumption. 
     The result shows that, by using more advanced signalling systems and 
optimal train control strategies, interactions between trains can be avoided, 
thereby improving performance. This also has the effect of reducing the energy 
required to make a particular journey. 
Keywords: optimal driving strategy, high speed railway; train signalling system, 
brute force, genetic algorithm, active set. 

1 Introduction 

Many signalling systems have been developed since the first use of railways to 
improve strategies for safe train movement, from early fixed block signalling 
systems to moving block and, more recently, relative braking systems [1]. Each 
system has its own advantages and disadvantages in terms of investment cost, 
efficiency and stability. Therefore, before upgrading or building a railway line, it 
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is important to select a signalling system that is able to meet the requirements of 
that line. The use of computer simulations can assist in selecting the correct 
signalling system in a simple and economic way. A number of researchers have 
investigated the use of train movement simulators to analyse railway signalling 
systems [2–4].  
     Once a signalling systems has been decided upon, to improve performance 
the train trajectory can be optimised.  This is a complex problem, which can be 
undertaken by searching for the optimal train coasting points using methods such 
as genetic algorithms (GA) [5, 6]. Other advanced methods such as artificial 
neural networks and fuzzy logic have also been employed to improve the 
efficiency and results of the optimisation [7, 8]. 
     This paper describes the development and application of a computer simulator 
which is able to evaluate the performance of different signalling systems, 
including differences in journey time and train energy consumption. Using a 
multi-train simulator, five different signalling systems are simulated on a 
common section of high-speed line operating with two trains. 

2 Simulation case studies 

The multi-train simulator used in this paper was developed in MATLAB.  It is 
able to simulate multiple train movements with differing signalling systems, 
traction performance and permitted speeds. 
     The simulated scenarios used in this paper include two high speed trains, 
which operate along a single track with three stations and a fixed station dwell 
time. When the simulation is complete, the simulator outputs journey time cost 
against distance, energy cost against distance and speed against distance 
relationships. 
     In this paper three main case studies are considered: 
 

(1). Case Study 1 considers the operation of two trains, using a 4-aspect 
signalling system, with a headway that does not cause interactions 
between trains.  This case study is used as a base case. 

(2). Case Study 2 considers the effect of reducing the service interval to 
200 s.  Five signalling systems are simulated. 

(3). Case Study 3 considers how the train control strategy can be improved 
to optimise trajectories. A comparison is made between five signalling 
systems. 

2.1 Case Study 1 – undisturbed motion simulation 

The results of case study 1, which considers two trains operating using a 4-aspect 
signalling system with a service interval of 285 s between trains, are shown in 
Figure 1. Each vertical marker on the x-axis represents a signalling block. The 
letters ‘G’ (green), ‘Y’ (single-yellow), ‘YY’ (double-yellow), ‘R’ (red) in the 
figure indicate the signal aspect at a certain time. There are three stopping 
stations along the route, located at 0 km, 12.5 km and 27.5 km.  
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Figure 1: An undisturbed motion. 

     From the graph, it can be seen that there is no interaction between the trains 
during their journeys. The minimum service interval which results in an 
undisturbed motion is called the minimum line headway. The minimum line 
headway time includes train cruising time, braking time, dwell time and time for 
the train to clear the overlap and train length [9]. 

2.2 Case Study 2 – disturbed motion simulations 

If the service interval is below the minimum line headway time, train interactions 
will occur. The scenario shown in Figure 2 shows a disturbed motion with a 
200 s service interval. Interactions occur when the second train approaches each 
station. 
     The journey of the second train, as shown in Figure 1, can be described as 
follows: 
 

(1). At point (a), the driver sees a double yellow signal when approaching 
the 9th block. The train then starts to brake. 
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(2). At point (b), the driver sees a single yellow signal when approaching the 
10th block. The train therefore continues braking and prepares to stop 
before the next red signal. 

(3). At point (c), the driver sees a single yellow signal again when 
approaching the 11th block. The train does not need to stop but should 
continue cruising at a low speed. 

(4). At point (d), the train stops at the second station. 
 
     In this scenario, when the first train dwells at the second station, the distance 
interval between it and the following train is reduced. The journey of the second 
train will be disturbed as the distance between the two trains tends towards the 
minimum line headway distance. If the dwell time is extended for any reason, a 
more significant interaction will result between the two trains. 
 

 

Figure 2: A disturbed motion. 

     Figure 3 shows the results of the same scenario when different signalling 
systems are used.  
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Figure 3: Journey time against distance for different signalling systems. 

     Several interesting performance characteristics can be observed: 
(1). For fixed block signalling systems, performance improvement increases 

as more aspects are used. In this particular case study, there is a 
significant difference between 3-aspect and 4-aspect signalling systems; 
the second train comes to a complete stop when 3-aspect signalling is 
applied. 

(2). More advanced signalling systems provide better speed control 
strategies, resulting in fewer disturbances compared with simpler 
systems. However, the difference in performance between the most 
advanced signalling systems is small. 
 

2.3 Case study 3 – train speed limit levels optimisation 

2.3.1 Introduction 
Changes in train velocity caused by train interactions increase energy 
consumption and reduce passenger comfort. Rather than requiring trains to run 
as quickly as possible, an optimal train control strategy which considers both 
journey time cost and energy cost could be the most appropriate for practical use. 
     The developed simulator can control the train trajectory through a series of 
train speed limit levels, as shown in the ‘input’ block in Figure 4. Using the 
simulator, the train journey time, and train energy usage can be calculated. In this 
case study, two speed limit levels are considered, three different operating 
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priorities are defined and three search methods, namely Brute Force, Genetic 
Algorithm, and Active Set, are used to find the most appropriate speed limit 
levels to balance the minimum energy cost against the minimum journey time.  
 
 

 

Figure 4: Flowchart of the train trajectory control. 

     The energy cost fitness function is shown as follows: 
 

݁ݑ݈ܽݒ ݏݏ݁݊ݐ݂݅  ൌ ௥௨௡ܧ ൈ ௘ݓ ൅ ௥ܶ௨௡ ൈ  ௧ (1)ݓ

௥௨௡ܧ  ൌ ݂ሺ ௟ܸଵ; ௟ܸଶ; ܽ௔௖; ܽ௕௥ሻ, ௥ܶ௨௡ ൌ ݃ሺ ௟ܸଵ; ௟ܸଶ; ܽ௔௖; ܽ௕௥ሻ 

 
where Erun is the calculated energy cost; Trun is the calculated journey time cost; 
we and wt are the weightings associated with Erun and Trun. Different conditions 
can be achieved by using different weighting sets. Vl1 is the train speed limit for 
the first part of the journey; Vl2 is the train speed limit for the second part of the 
journey; aac is the acceleration rate; abr is the braking rate.  

2.3.2 Brute Force 
Brute Force initially enumerates all possible candidate solutions and outputs 
their journey time / energy cost pair. The lowest speed considered is 15 ms-1, and 
the highest limit is 55.6 ms-1 (the top speed of the train). Using a speed limit 
level search interval of 0.2 ms-1, 41,616 solution pairs are found. The pair with 
the same journey time and the lowest energy cost is identified. The journey time 
is incremented from 850 s to 1000 s with an interval of 0.5 s, thus reducing the 
solution pairs to 301. The results can be used to create a relationship between 
energy cost and journey time. 

2.3.3 Genetic Algorithm 
An alternative approach is to use a Genetic Algorithm (GA), an evolutionary 
algorithm that searches the solution space [10].  
     Each train speed limit level series is considered as one chromosome. Firstly, 
20 chromosomes are chosen to create the first generation. Secondly, all 
chromosomes are evaluated by the train simulator and their journey time / energy 
cost pairs are ranked using the fitness function, eqn (1). Finally, in order to build 

32  Computers in Railways XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 127, © 2012 WIT Press



 
 

up the next generation, 20 new chromosomes are created using the following 
processes: 
 

(1). The top two ranking chromosomes are retained for the next generation. 
(2). The next 14 ranked chromosomes are put into pairs and ‘crossed-over’, 

where each chromosome in a pair randomly swaps one of its genomes 
with its partner, thus creating two new chromosomes. 

(3). The last four ranked chromosomes are mutated. Four new chromosomes 
are created by substituting one genome in each chromosome for a 
random value. 

 
     Using the new generation, the program then returns back to the second step 
and repeats the processes. This loop will continue until a termination condition 
has been achieved. In this case, 30 generations is set as the termination 
condition. 

2.3.4 Active Set 
A subset of inequalities can be calculated by using the estimation of the Active 
Set [11]. It aims to find the minimum of a constrained nonlinear multivariable 
function. In this case the cost function, eqn (1) is used. 
     The Active Set algorithm processes with the following steps: 
 

(1). A search start point is given.  
(2). The solution to the equality problem and its Lagrange multiplier are 

calculated. 
(3). If the function tolerance is less than the set value, the optimisation will 

be stopped. If it is not, the program will remove a subset of the 
constraints by using the negative Lagrange multiplier. 

(4). The program will calculate a new start point and constraint, then repeat 
this process from Step 2.  

2.3.5 Comparison of the searching methods 
Table 1 shows a comparison of the three different search methods. It can be seen 
that the average computational time of the Brute Force approach is much greater 
than the other methods. This is because the Brute Force algorithm calculates a 
journey time / energy cost pair for every speed limit search interval. The average 
computation time for the Brute Force approach could be reduced if the search 
interval is increased. 
     The Brute Force algorithm will always produce the optimum results. 
However, due to its large computation time, it is not practical for use in real-time 
applications. Nonetheless, the results produced can be used as reference values to 
compare the results from other search methods, as illustrated in Figure 2. In 
Figure 3 it can be seen that the Active Set algorithm is able to provide results 
close to the optimal values produced by the Brute Force algorithm; additionally, 
as shown in Table 2, the computation time is low. The Active Set algorithm is 
therefore used for further simulations in this paper. 
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Table 1:  Characteristic comparisons between three searching methods with 
journey time cost requirement of 900 s for 10 runs, Computer 
specifications: CPU=Intel Core2 Q9550 (2.83 GHz); 
Memory=3 GB; Operation system=Microsoft XP Professional SP3; 
MATLAB Version=7.11.0 (R2011b). 

Searching methods Average computational time (s) 
Brute Force 4,367.76 

Genetic Algorithm 394.38 
Active Set 233.17 

 

 

Figure 5: Journey time vs. energy cost curves using different searching 
methods. 

3 Results 

The simulations carried out in the previous sections show that, in general, faster 
journeys require more energy. In order to consider the trade-off between journey 
time and energy usage, three train control strategies are considered: 
 

(1). Line speed running (flat-out): Trains always run at the maximum line 
speed, hence there is a significant likelihood of interactions between 
trains. Such interactions will result in increased journey times and 
energy costs. 
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(2). Optimal journey time running (optimal): The train trajectory of the 
second train is optimised with respect to journey time, taking into 
account the interactions between the two trains. This will result in an 
optimal journey time at a moderate energy cost. 

(3). Interactions avoidance running (cautious): A speed trajectory for the 
second train is calculated to ensure that no interactions occur between 
the two trains. This will result in a longer journey time with a lower 
energy cost. 

Table 2:  Journey time and energy cost against different train control 
strategies. 

 Train 1 – Non-
stop 

Train 2 – 
Stopping 

(no interaction) 

Train 1 – Stopping 
Train 2 – Stopping 

(moderate 
interaction) 

Train 1 – Stopping 
Train 2 – Non-stop 

(significant interaction) 

Journey 
time 

cost (s) 

Energy 
cost 

(kWh) 

Journey 
time 

cost (s) 

Energy 
cost 

(kWh) 

Journey 
time cost 

(s) 

Energy cost 
(kWh) 

3-aspect 
signalling 

Flat-out 
running 

846 429 969 439 988 426 
 

Optimal 
running 

846 
 

429 955 
(-1%) 

378 
(-14%) 

973 
(-2%) 

183 
(-57%) 

Cautious 
running 

846 429 1001 
(3%)  

289 
(-34%) 

985 
(-0.3%) 

126 
(-70%) 

4-aspect 
signalling 

Flat-out 
running 

846 429 920 446 913 437 
 

Optimal 
running 

846 429 911 
(-1%) 

368 
(-17%) 

896 
(-2%) 

166 
(-62%) 

Cautious 
running 

846 429 938 
(2%) 

279 
(-37%) 

914 
(0.1%) 

126 
(-71%) 

5-aspect 
signalling 

Flat-out 
running 

846 429 892 436 888 431 
 

Optimal 
running 

846 429 891 
(-0.1%) 

415 
(-5%) 

870 
(-2%) 

154 
(-64%) 

Cautious 
running 

846 429 946 
(6%) 

264 
(-39%) 

890 
(0.2%) 

130 
(-70%) 

Moving 
block 

Flat-out 
running 

846 429 849 441 831 423 
 

Optimal 
running 

846 429 849 
(0%) 

441 
(0%) 

821 
(-0.1%) 

206 
(-51%) 

Cautious 
running 

846 429 891 
(5%) 

325 
(-26%) 

853 
(3%) 

132 
(-69%) 

Relative 
braking 

Flat-out 
running 

846 429 855 439 829 398 
 

Optimal 
running 

846 429 854 
(-0.1%) 

411 
(-6%) 

815 
(-2%) 

189 
(-52%) 

Cautious 
running 

846 429 870 
(2%) 

358 
(-18%) 

848 
(2%) 

133 
(-66%) 

 
     Table 2 shows the journey times and energy costs for three scenarios with 
different combinations of stopping and non-stop services (the numbers in 
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brackets show the percentage difference compared with line speed running). Five 
different signalling systems are considered with each of the three different train 
control strategies. 
     It can be seen in Table 2 that significant differences in journey time and 
energy cost are experienced when interactions occur between trains. For 
example, for fixed block signalling systems, an energy reduction of up to 64% 
can be achieved if train interactions are eliminated by changing from Line Speed 
Running to Optimal Journey Time Running, which also provides a journey time 
reduction of almost 2%. For moving block and relative systems the energy 
savings are not as large, but are still significant.  
     When switching from Line Speed Running to Interaction Avoidance Running, 
journey times are increased slightly, but energy costs are decreased significantly. 
Energy savings can be reduced by as much as 71% for an increase in journey 
time of 0.1%. 

4 Conclusions 

This paper has analysed the differences in journey time and energy usage on a 
high-speed line when different signalling systems and train control strategies are 
employed.  
     Brute Force, Genetic Algorithm and Active Set searching methods were 
compared for calculating optimal trajectories. The Active Set method was shown 
to provide close to optimal results with a low computational time, and it was 
therefore concluded that this method was well suited to solve such problems. It 
was found that by applying optimal train control strategies it is possible to reduce 
the number of interactions and reduce energy usage. 
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