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Abstract 

Model transformation is at the heart of Model-Driven Engineering (MDE). In 
MDE, the system model is specified using a modelling language, such as UML 
(Unified Modelling Language) or a DSL (Domain-Specific Language). Once a 
model is specified, executable code for a computing platform can be 
automatically generated by means of model transformation (code generation). 
Besides the support for incremental model development, MDE also enables the 
formal verification of system properties. In the context of safety-critical systems, 
such as railway interlockings, the system model (e.g., specified in terms of 
UML) can be translated to a formal (mathematical) language more amendable to 
rigorous analysis. This paper presents a model transformation that takes a 
railway interlocking model (specified in Executable UML (xUML)) as input and 
outputs a formal model that can be mathematically analysed. This can potentially 
bridge the gap between well-known modelling languages (such as xUML) and 
formal languages, which facilitates the systematic development of safety-critical 
systems in terms of MDE. A small xUML railway interlocking model is used to 
illustrate the proposed method. 
Keywords: railway interlocking systems, model driven engineering (MDE), 
executable UML (xUML), formal languages, formal analysis. 

1 Introduction 

Railway interlocking plays a very important role in establishing high safety for 
train operations in a railway system, and protecting passengers and equipment 
from damage. Due to its life-critical application, a rigorous verification phase is 
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required to ensure the correctness of the interlocking system. Among the most 
common verification methods (including simulation and test) used in the 
verification phase, formal methods are often recommended for modelling and 
verifying interlocking systems [1]. Differently from testing and simulation, 
formal verification allows the analysis of all the possible scenarios that a system 
can possibly generate. For instance, in terms of railway interlockings, it can 
check all the possible executable combinations for a given track layout. 
     However, compared with the use of testing and simulation for the analysis of 
modelling languages, such as the Unified Modelling Language (UML) or 
Domain-Specific Languages (DSL), the use of formal verification requires a lot 
of mathematical expertise from software engineers. In this sense, Model-Driven 
Engineering (MDE) [2] paves a solid foundation in the use of automatic formal 
verification for railway interlocking systems by means of model transformation. 
In this approach, the model of a railway interlocking can be defined using a 
modelling language, such as Executable UML (xUML), and automatically 
translate that to the input language of a formal verification tool. The 
effectiveness of this approach depends on two important aspects, related to the 
use of: (a) a tool for automating the model transformation and (b) a target formal 
language with enhanced tool support.  
     Firstly (a), several model transformation tools can be found in the literature, 
such as ATL [3] and graph-based model transformation [4], which have gained 
widely use in MDE. Amongst them, the Epsilon model management framework 
[5], built on top of the Eclipse platform [6], supports a collection of 
transformation languages. Including ETL (Epsilon Transformation Language) 
for model-to-model transformation and EGL (Epsilon Generation Language) for 
model-to-text transformation.  
     Secondly (b), tool support for the formal analysis includes several technologies, 
including: (a) finite-state model checkers; and (b) theorem provers. Examples of 
such languages and tools include CSP [7], B [8], Alloy [9] and Promela/SPIN [10]. 
However, due to the required expertise for using them, these languages are not 
widely used by engineers compared to modelling languages like xUML. In 
particular, this work focuses on the use of (a) finite-state model checkers. In this 
formal verification approach, the tool (model-checker) generates and analyses all 
the possible execution paths, for a given scenario of the model, against a system 
property. For example, a safety property in a railway interlocking model would be 
that trains never collide due to a signal error in the interlocking. This property is 
then formalised following the model's definition in the formal language. 
     In this paper we describe our approach for analysing interlocking models 
specified in Executable UML (xUML). xUML has been used for modelling 
railway interlocking systems in the context of the INESS (INtegrated Europe 
Signalling System) European project (http://www.iness.eu/). In particular, we 
show how to translate an xUML scenario representing a track layout for a small 
interlocking to the formal language Communicating Sequential Processes (CSP). 
This model can be formally analysed using the FDR2 tool [11].  
     Figure 1 illustrates the framework of the proposed approach. It consists of 
several steps, starting from the xUML model of a railway interlocking system to 
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the generation of the CSP code. Then, formal verification takes place using the 
FDR2 tool, which is used to detect and show errors of the xUML model 
representing the railway interlocking.  

1.1 Related work 

There is a significant body of work in the literature (e.g., [12, 13]) targeting the 
formal analysis of railway interlocking systems. However, the shortage of user-
friendly modelling tools (e.g., UML) and the support for the automatic 
verification of interlocking models make it difficult to gain wide use in industry. 
Regarding the use of model transformation for analysing xUML model, the work 
of Treharne et al. [14] is particularly relevant to our work. They present a model 
transformation that uses as input an xUML model and output a formal model in 
the CSP || B language. Similarly, Hansen et al. [15] describes a formalisation of a 
subset of xUML in the formal language mCRL2. Both works also target the 
automatic analysis of the xUML models using tool support. 

1.2 Organization 

The rest of the paper is organized as follows. The next section presents an 
overview of xUML, used to model railway interlocking systems, and the formal 
language CSP, utilised for the formal verification of these models. The 
generation of a CSP models from xUML models is presented in Section 3. 
Section 4 shows an overview of the formal analysis the proposed approach. 
Finally, we conclude the paper in Section 5. 
 

 

Figure 1: Framework for the verification of railway interlocking models in 
xUML. 
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2 Background 

2.1 Executable UML for modelling railway interlockings 

Executable UML (xUML) [16] is a coherent subset of UML that has been 
developed to define the program execution of the model at a higher level of 
abstraction. This abstraction leaves open the possibility to generate an 
implementation of the system in different target (computing) languages, 
including technologies like C, Java and Ada. xUML extends UML with an 
Action Specification Language (ASL), providing all the conditional logics and 
primitive needed to manipulate xUML objects, which allows the developer to 
define the behaviour in sufficient detail so that it can be executed. The other 
benefit of using an ASL is the ability to describe a system independent of its 
target platform. Typically, xUML supports the following UML diagrams [17]: 

 Use Case Diagrams to capture the requirement of the system; 
 Sequence Diagrams to define the interaction among different domains; 
 Class Diagrams to describe the classes in each domain; 
 State Machines to specify the behaviour of each class. 

     In this paper, we focus on the use of class diagrams and state machines, since 
these are the main diagrams used to construct the xUML models of railway 
interlockings described in this paper. Basically, a class is used to define the 
structure of an object (e.g., attributes and associations). Every class has an 
associated state machine, which defines the behaviour of the object. 
     Figure 2 shows the xUML class diagram of a simple interlocking specification 
called the Micro interlocking model [15], which has been provided by partners in 
the INESS project. It contains five classes, named element, track, point, signal and 
route. The class element is a generalisation of track, point and signal. This means 
that all the structure and behaviour defined for element will be part of the structure 
and behaviour of these classes. An instance of the Micro model is obtained from 
the track layout depicted in Figure 3. This small layout consists of three tracks t1, 
t2, t3, one point p1, one signal s1 and two routes. The first route r1 requires p1 to be 
positioned left and goes from track t1 to track t3. Route r2 requires p1 to be 
positioned right and goes from t1 to t2. Both routes have s1 as their entry signal. The 
model instances thus contains three track objects, one point object, one signal 
object and two route objects. Every component of the layout corresponds to a 
particular component of the class diagram. 
     Figure 4(a) presents the state machine associated to the route class. This 
models the main functionality of the Micro interlocking, i.e., route setting and 
route cancellation. When a route receives a reserve request, it sends a signal to its 
left and right points to move into position. When all points are positioned, tracks 
along the route and entry signal are ready, the route becomes ready. When one of 
the elements associated with the route is no longer in the required ready state, or 
the route is cancelled, the route becomes idle. Figure 4 (b) shows the state 
machine associated to the point class. In this state machine, two states normal 
and error are used to model the normal and abnormal operations. The 
presentation of the other state machines is omitted for simplicity. 
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Figure 2: Class diagram for the micro interlocking track layout example. 

idle

preparing

active

route

When(
forall tracks is_true in_state(automatic.ready) and 
forall left_points is_true in_state(normal.detected.left) and
forall right_points is_true in_state(#normal.detected.right) 
and entry_signal.in_state(#automatic.ready)))/
send entry_signal.set_proceed; say ‘Request completed!’

reserve_route/
     send left_points.to_left;
     send right_points.to_right

route/id:=pid

When(
exist tracks is_true in_state(#automatic.ready) or 
exist left_points is_true not in_state(normal.detected.left) or
exist right_points is_true not in_state(#normal.detected.right) 
and not entry_signal.in_state(#automatic.ready)))/

cancel_route/
     say ‘Request completed’

ready

exit/send entry_signal.set_stop

 
(a) state machine for route class.                    (b) state machine for point class. 

Figure 3: State machines associated to the classes route and point. 

2.2 CSP 

CSP is a notation for describing concurrent systems whose components, called 
processes, communicate with each other and the environment. A process can be 
thought of as an independent entity which has interfaces through which the 
processes interact with the external environment. A process is defined in terms of 
events – basic elements of CSP.  
     CSP-M [18] is a machine-readable version of CSP developed as the input 
language of the FDR2 tool. CSP-M extends CSP with a small but powerful 
functional language, which offers constructs such as lambda and let expressions. 
The language provides a number of predefined data types, e.g., Booleans, 
integers, sequences and sets, and also allows user-defined data types. CSP-M is 
now the de facto standard of machine-readable CSP.  
     FDR2 is a model checker for CSP. It allows concrete design description to be 
compared with abstract specification in order to check if the refinement 
properties are satisfied. If the properties are not satisfied (thus the refinement  
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Figure 4: The CSP metamodel. 

check fails), FDR2 will generate counter-examples that can be used to pin-point 
the error that caused the property to fail. 

3 Model transformation (generating CSP from xUML) 

In order to use model transformation technology to generate a CSP model, 
amenable to formal verification, from the original xUML model, we need to 
define a meta-model. Basically, a meta-model defines a structure that models 
must conform to. For instance, a correct model representing the transformed CSP 
model, must conform to the meta-model (structure) that we have defined for 
CSP, which will be detail discussed in the following section.  
     With a target meta-model specified, we define translation rules that are executed 
automatically. These rules are composed of input and output elements. Input 
elements correspond to elements found in the xUML model. The output defines 
what element this particular input should be transformed to. In particular, we have 
used the Epsilon tool-set for implementing the transformation of the model. 
     In our work, we have used two different types of transformation. Firstly, we 
use a model-to-model transformation for generating a target CSP model from the 
source xUML model. Secondly, we use the newly created CSP model to define a 
model-to-text transformation that generates code, which can be analysed with the 
FDR2 model-checker. 
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3.1 CSP metamodel 

As described previously, the CSP metamodel is shown in Figure 5. This meta-
model bears several similarities to the works of Bisztray et al. [19] and Treharne  
et al. [14], in particular the use of the Datatype and DatatypeItemList classes. Like 
[14], we model all event and their types, e.g., the event read.ih?x corresponds to an 
instance of Input for the channel called read, which has two EventParameters, ih, 
and x. Modeling this aspect is especially important for our use which requires 
communication of CSP events with different handlers of instance processes. In 
addition, the metamodel also contains support for localized definition 
(StMachineProc), which is convenient for representing the behaviour of xUML 
state machines. 
     There are however significant differences. A major difference is that the 
AndStProc, MsgQueProc, GlobalVarProc classes are employed to describe the 
concurrent state machine, message queue and global variables of the class, 
respectively. In CSP the process can only refer to its own variables (there are no 
shared variables), which results in a lot of difficulties in the transformation of 
xUML models with state information. In favour of simplifying the 
transformation, the above classes, associated with the global variable and 
message queue of xUML classes, are explicitly introduced. 

3.2 Transformation rules 

Based on the meta-models for xUML and CSP, we construct transformation rules. 
The general procedure used for generating CSP models, out of xUML models, is 
outlined in Algorithm 1. This basically consists of the following transformations: 
 Translation of class instances, 
 Translation of control flow in the state machines, 
 Translation of the signal queue modelling the external environment, 
 Translation of global variables for storing state values and attributes of 

state machines,   
 Composition of the all transformed process into the final process SYS 

(representing the global execution system). 
     For the purposes of readability we only discuss the transformation of class 
instances and their associated state machines found in the xUML model.  
 

Algorithm 1. An outline for generating CSP for object instances. 
1  for all c in class of xUML model m do 

2    if c has a state machine sc then 

3       <c>_SCTRL(ih) = let /*state machine behavior for instance handler ih*/ 

4       for all states, s, in sc do 

5          <c>_STATES= receive.ih?x ‐> if (x==trigEvt ) then  

6                                                                else if … 

7                                                                else <c>_STATES 

8      end for 

9        within /*initial _STATES process*/ 

10     <c>_QueueS(ih, s) = (#s<M)&generate.ih?x ‐> … /* the message queue associated with sc*/ 

11                      [](#s>0)& receive.ih!head(s) ‐> … 

12     <c>_GStVar(ih,v) = …          /*the global variable process to store the state value of sc*/ 
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13     <c>_Atribute(ih, w) = …   /*the global variable process to store the attribute value of sc*/ 

14   end if   

  /*Composition of all instances in <c>_HANDLER*/ 

15 SYS=(|||ihHANDLER <c>_SCTRL(ih)){|generate,...|} (|||ihHANDLER <c>_QueueS(ih, s)) 

      {|...|} (|||ihHANDLER <c>_GStVar(ih,v)) {|...|} (|||ihHANDLER <c>_Atribute(ih, w)) 

3.2.1 Transforming the class instance 
A class instance, either active or passive, is translated into a controller process. 
In our translation from xUML to CSP, each class becomes a process 
specification <c>_SCTRL(ih), as shown in line 3 of Algorithm 1. Each one of 
these processes consists of four parallel parts: the first part is the translation of 
the state machine associated with class (lines 3 to 9), the second part formalises 
the state machine inherited from the superclass (the detail discussion is omitted 
here for conciseness), the third part models the message queue associated with 
the state machine as an event pool (lines 10 to 11), and the fourth part denotes 
the global variables used to store the state location and update the value of the 
attribute of the state machine (lines 12 and 13), respectively. Finally, the CSP 
code associated with the composition of all instances is given in line 15. 

3.2.2 Transforming the state machine 
In this section, based on the semantics of the xUML state machine, we design a 
transformation of the xUML state machine model to a CSP specification in a 
compositional manner. Our transformation rules are designed to inductively 
process the three types of state found in xUML: basic states, OR-states and 
AND-states. The core transformation rules (defined using the Epsilon 
Transformation Language (ETL) of the Epsilon tool) are presented is Listing 1.  
 

1 operation StateMachine2CTRLProcess (sr : UML!StateMachine)  
2 : CSP!StMachineProc { 
3 var root : new CSP!StMachineProc; 
4 root.ProcID := sr.name + '_CTRLS'; 
5 var states := UML!Vertex.all.select 
6  (sm1|sm1.containingStateMachine() = sr); 
7 for (st in states){ 
8   var Cont := st.container; 
9   if (Cont.state.isDefined()) { 
10     var stProc : new CSP!StateProc; 
11     if (Cont.state.isOrthogonal) { 
12       SimConcurent2StProc(st, sr, stProc); 
13     } else {  
14       SimComp2StProc(st, sr, stProc); 
15     } 
16     root.letProc.add(stProc); 
17   } …        
18 }  
19 var startP : new CSP!StateProc; 
20 startP := getStartState(sr); 
21 root.first := startP; 
22 return root; 
23 } 

Listing 1: Transformation rules for the state machine. 
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     The operation StateMachine2CTRLProcess is responsible for transforming 
the xUML state machine into a localized (let … within) process. In terms of our 
CSP metamodel, this mainly involves a creation of new instances of 
CSP!StMachineProc. In line 4, we set the name of the name of state machine, 
e.g., track_CTRLS. From lines 7 to 18, each of the states of the state machine are 
iterated and operations are called to transform the state types.  
     Note that st, sr, stProc are process parameters and denote the instance of 
UML!Vertex, UML!StateMachine and CSP!StateProc, respectively. Each 
application of the above operations returns a process instance stProc, which is 
added to the localized process by the statement root.letProc.add(stProc). 
Finally, we compute the initial state of the class diagram using the 
getStartState operation and we link the new process to the original root. 

4 Formal analysis of an interlocking model 

In this section we exemplify the verification of the xUML Micro interlocking 
shown in Section 2.1. Listing 2 illustrates a partial translation of the point state 
machine (presented in Figure 4(b)) in terms of CSP. Lines 9 to 18 denote the 
process normal_detected_undefined_STATES, which reacts to the external 
event tout (modelling the time event after (30)) and reaches the target process 
error_STATES. At the same time the concurrent process 
normal_requested_right_STATES, representing the behaviour of concurrent 
region request, is terminated by the process STOP (shown in lines 19 to 23). The 
resulting process STOP||| error_STATES is equivalent to error_STATES, which is 
used to model the transition from state undefined to stop. The synchronization 
communication statement envGenerate.ih?ok is used to keep the consistent pace 
between the concurrent states, i.e., request and detected.  
 

1 point_CTRLS(ih) = let 
2   Initial_0_STATES= 
3     normal_STATES  
4   normal_STATES=                 
5     normal_requested_Initial_0_STATES 
6       ||| 
7     normal_detected_Initial_0_STATES  
8  …  
9   normal_detected_undefined_STATES= 
10    receive_normal_detect.ih?x -> 
11    if(x==tout) then 
12      write.ih!error_STATE ->  
13      envGenerate_detected.ih?ok -> 
14      error_STATES 
15    else if(x==at_right) then 
16      …… 
17    else if(x==at_left) then 
18        …… 
19  normal_requested_left_STATES= 
20    receive_normal_request.ih?x ->  
21    if (x==tout) then  
22      envGenerate_requested.ih?ok -> STOP 
23    else if(x==to_right) then … 
24  error_STATES= 
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25    receive.ih?x: EVENT ->  
26    envGenerate_detected.ih?ok ->  
27    envGenerate_requested.ih?ok -> error_STATES  
28 within Initial_0_STATES  

Listing 2: Partial CSP code for the state machine point. 

     The CSP code for the composition of all instances in the Micro interlocking 
model is shown below. Here, different instances of track (i.e., t1, t2, t3), route 
(i.e., r1, r2), point (i.e., p1) and signal (i.e., s1) are executed in parallel.  
 

SysCTRL =  
(point_CTRLS(p1) ||| signal_CTRLS(s1)  
|||track_CTRLS(t1) |||track_CTRLS(t2) 
|||track_CTRLS(t3)|||route_CTRLS(r1)|||route_CTRLS(r2)) 

[|{|envGenerate, envGenerate_detected, 
 envGenerate_requested|}|] 

(element_CTRL_point_CTRL(p1)|||element_CTRL_signal_CTRL(s1) 
|||element_CTRL_track_CTRL(t1) 
|||element_CTRL_track_CTRL(t2) 
|||element_CTRL_track_CTRL(t3)) 
 

     To demonstrate the verification approach, we analyse the model against a 
very simple property. Basically, we check if the interlocking model never gets to 
a deadlock situation – where no routes can be further reserved or cancelled. 
Deadlock checking is implemented with respect to the processing of signals in 
active objects. For example, we need to check that 

 | |
||

externalGenerate
SYSLinkSysState ExternalSignals

 

is deadlock-free. The following partial listing shows the corresponding CSP 
process ExternalSignals, which is used to define the property.  

External_Point_p1 = externalGenerate.p1!at_right ->  
externalGenerate.p1!to_right -> external_Point_p1 
…… 

 

     The verification results obtained in the FDR2 tool are shown in Figure 5. 
 

 

Figure 5: Snapshot of deadlock-free verification in the FDR2 tool. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

824  Computers in Railways XII



5 Conclusions and future work 

Modelling languages, like Executable UML (xUML), can be used for the 
definition of railway interlocking systems. In particular, modelling languages 
typically use testing and simulation of the analysis of the system. They tend not 
to provide analysis based on formal, more rigorous, methods. This is especially 
needed for the analysis of safety-critical systems, like railway interlockings. 
     In this paper, we have presented our approach towards the formal analysis of 
railways signalling specified with xUML. Our approach focuses on the use of 
model transformation, an integral part of Model-Driven Engineering. Starting 
from an xUML model, we translate that to the Communicating Sequential 
Process (CSP) language, used as input to the FDR2 formal verification tool. This 
enables the formal analysis of the model using FDR2.  
     Future work will mainly focus on the provision of a transparent verification 
methodology. For instance, currently, the verification results of the analysis of 
the system are provided in terms of the CSP model. We want to be able to: (i) 
specify verification properties in terms of the xUML model; (ii) generate 
counter-examples, executions of the model that violate the property, provided by 
FDR2 in terms of  the xUML model (using sequence diagrams of UML). 
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