
Use of model transformation for the formal
analysis of railway interlocking models

T. Xu1, O. M. Santos2, X. Ge2 & J. Woodcock2

1State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, China
2Department of Computer Science, University of York, UK

Abstract

Model transformation is at the heart of Model-Driven Engineering (MDE). In
MDE, the system model is specified using a modelling language, such as UML
(Unified Modelling Language) or a DSL (Domain-Specific Language). Once a
model is specified, executable code for a computing platform can be
automatically generated by means of model transformation (code generation).
Besides the support for incremental model development, MDE also enables the
formal verification of system properties. In the context of safety-critical systems,
such as railway interlockings, the system model (e.g., specified in terms of
UML) can be translated to a formal (mathematical) language more amendable to
rigorous analysis. This paper presents a model transformation that takes a
railway interlocking model (specified in Executable UML (xUML)) as input and
outputs a formal model that can be mathematically analysed. This can potentially
bridge the gap between well-known modelling languages (such as xUML) and
formal languages, which facilitates the systematic development of safety-critical
systems in terms of MDE. A small xUML railway interlocking model is used to
illustrate the proposed method.
Keywords: railway interlocking systems, model driven engineering (MDE),
executable UML (xUML), formal languages, formal analysis.

1 Introduction

Railway interlocking plays a very important role in establishing high safety for
train operations in a railway system, and protecting passengers and equipment
from damage. Due to its life-critical application, a rigorous verification phase is

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 815

doi:10.2495/CR100741

required to ensure the correctness of the interlocking system. Among the most
common verification methods (including simulation and test) used in the
verification phase, formal methods are often recommended for modelling and
verifying interlocking systems [1]. Differently from testing and simulation,
formal verification allows the analysis of all the possible scenarios that a system
can possibly generate. For instance, in terms of railway interlockings, it can
check all the possible executable combinations for a given track layout.
 However, compared with the use of testing and simulation for the analysis of
modelling languages, such as the Unified Modelling Language (UML) or
Domain-Specific Languages (DSL), the use of formal verification requires a lot
of mathematical expertise from software engineers. In this sense, Model-Driven
Engineering (MDE) [2] paves a solid foundation in the use of automatic formal
verification for railway interlocking systems by means of model transformation.
In this approach, the model of a railway interlocking can be defined using a
modelling language, such as Executable UML (xUML), and automatically
translate that to the input language of a formal verification tool. The
effectiveness of this approach depends on two important aspects, related to the
use of: (a) a tool for automating the model transformation and (b) a target formal
language with enhanced tool support.
 Firstly (a), several model transformation tools can be found in the literature,
such as ATL [3] and graph-based model transformation [4], which have gained
widely use in MDE. Amongst them, the Epsilon model management framework
[5], built on top of the Eclipse platform [6], supports a collection of
transformation languages. Including ETL (Epsilon Transformation Language)
for model-to-model transformation and EGL (Epsilon Generation Language) for
model-to-text transformation.
 Secondly (b), tool support for the formal analysis includes several technologies,
including: (a) finite-state model checkers; and (b) theorem provers. Examples of
such languages and tools include CSP [7], B [8], Alloy [9] and Promela/SPIN [10].
However, due to the required expertise for using them, these languages are not
widely used by engineers compared to modelling languages like xUML. In
particular, this work focuses on the use of (a) finite-state model checkers. In this
formal verification approach, the tool (model-checker) generates and analyses all
the possible execution paths, for a given scenario of the model, against a system
property. For example, a safety property in a railway interlocking model would be
that trains never collide due to a signal error in the interlocking. This property is
then formalised following the model's definition in the formal language.
 In this paper we describe our approach for analysing interlocking models
specified in Executable UML (xUML). xUML has been used for modelling
railway interlocking systems in the context of the INESS (INtegrated Europe
Signalling System) European project (http://www.iness.eu/). In particular, we
show how to translate an xUML scenario representing a track layout for a small
interlocking to the formal language Communicating Sequential Processes (CSP).
This model can be formally analysed using the FDR2 tool [11].
 Figure 1 illustrates the framework of the proposed approach. It consists of
several steps, starting from the xUML model of a railway interlocking system to

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

816 Computers in Railways XII

the generation of the CSP code. Then, formal verification takes place using the
FDR2 tool, which is used to detect and show errors of the xUML model
representing the railway interlocking.

1.1 Related work

There is a significant body of work in the literature (e.g., [12, 13]) targeting the
formal analysis of railway interlocking systems. However, the shortage of user-
friendly modelling tools (e.g., UML) and the support for the automatic
verification of interlocking models make it difficult to gain wide use in industry.
Regarding the use of model transformation for analysing xUML model, the work
of Treharne et al. [14] is particularly relevant to our work. They present a model
transformation that uses as input an xUML model and output a formal model in
the CSP || B language. Similarly, Hansen et al. [15] describes a formalisation of a
subset of xUML in the formal language mCRL2. Both works also target the
automatic analysis of the xUML models using tool support.

1.2 Organization

The rest of the paper is organized as follows. The next section presents an
overview of xUML, used to model railway interlocking systems, and the formal
language CSP, utilised for the formal verification of these models. The
generation of a CSP models from xUML models is presented in Section 3.
Section 4 shows an overview of the formal analysis the proposed approach.
Finally, we conclude the paper in Section 5.

Figure 1: Framework for the verification of railway interlocking models in
xUML.

Computers in Railways XII 817

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

2 Background

2.1 Executable UML for modelling railway interlockings

Executable UML (xUML) [16] is a coherent subset of UML that has been
developed to define the program execution of the model at a higher level of
abstraction. This abstraction leaves open the possibility to generate an
implementation of the system in different target (computing) languages,
including technologies like C, Java and Ada. xUML extends UML with an
Action Specification Language (ASL), providing all the conditional logics and
primitive needed to manipulate xUML objects, which allows the developer to
define the behaviour in sufficient detail so that it can be executed. The other
benefit of using an ASL is the ability to describe a system independent of its
target platform. Typically, xUML supports the following UML diagrams [17]:

 Use Case Diagrams to capture the requirement of the system;
 Sequence Diagrams to define the interaction among different domains;
 Class Diagrams to describe the classes in each domain;
 State Machines to specify the behaviour of each class.

 In this paper, we focus on the use of class diagrams and state machines, since
these are the main diagrams used to construct the xUML models of railway
interlockings described in this paper. Basically, a class is used to define the
structure of an object (e.g., attributes and associations). Every class has an
associated state machine, which defines the behaviour of the object.
 Figure 2 shows the xUML class diagram of a simple interlocking specification
called the Micro interlocking model [15], which has been provided by partners in
the INESS project. It contains five classes, named element, track, point, signal and
route. The class element is a generalisation of track, point and signal. This means
that all the structure and behaviour defined for element will be part of the structure
and behaviour of these classes. An instance of the Micro model is obtained from
the track layout depicted in Figure 3. This small layout consists of three tracks t1,
t2, t3, one point p1, one signal s1 and two routes. The first route r1 requires p1 to be
positioned left and goes from track t1 to track t3. Route r2 requires p1 to be
positioned right and goes from t1 to t2. Both routes have s1 as their entry signal. The
model instances thus contains three track objects, one point object, one signal
object and two route objects. Every component of the layout corresponds to a
particular component of the class diagram.
 Figure 4(a) presents the state machine associated to the route class. This
models the main functionality of the Micro interlocking, i.e., route setting and
route cancellation. When a route receives a reserve request, it sends a signal to its
left and right points to move into position. When all points are positioned, tracks
along the route and entry signal are ready, the route becomes ready. When one of
the elements associated with the route is no longer in the required ready state, or
the route is cancelled, the route becomes idle. Figure 4 (b) shows the state
machine associated to the point class. In this state machine, two states normal
and error are used to model the normal and abnormal operations. The
presentation of the other state machines is omitted for simplicity.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

818 Computers in Railways XII

Figure 2: Class diagram for the micro interlocking track layout example.

idle

preparing

active

route

When(
forall tracks is_true in_state(automatic.ready) and
forall left_points is_true in_state(normal.detected.left) and
forall right_points is_true in_state(#normal.detected.right)
and entry_signal.in_state(#automatic.ready)))/
send entry_signal.set_proceed; say ‘Request completed!’

reserve_route/
 send left_points.to_left;
 send right_points.to_right

route/id:=pid

When(
exist tracks is_true in_state(#automatic.ready) or
exist left_points is_true not in_state(normal.detected.left) or
exist right_points is_true not in_state(#normal.detected.right)
and not entry_signal.in_state(#automatic.ready)))/

cancel_route/
 say ‘Request completed’

ready

exit/send entry_signal.set_stop

(a) state machine for route class. (b) state machine for point class.

Figure 3: State machines associated to the classes route and point.

2.2 CSP

CSP is a notation for describing concurrent systems whose components, called
processes, communicate with each other and the environment. A process can be
thought of as an independent entity which has interfaces through which the
processes interact with the external environment. A process is defined in terms of
events – basic elements of CSP.
 CSP-M [18] is a machine-readable version of CSP developed as the input
language of the FDR2 tool. CSP-M extends CSP with a small but powerful
functional language, which offers constructs such as lambda and let expressions.
The language provides a number of predefined data types, e.g., Booleans,
integers, sequences and sets, and also allows user-defined data types. CSP-M is
now the de facto standard of machine-readable CSP.
 FDR2 is a model checker for CSP. It allows concrete design description to be
compared with abstract specification in order to check if the refinement
properties are satisfied. If the properties are not satisfied (thus the refinement

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 819

Process

+ProcID
+expression

StateProc StateProcGlobalVarProcMsgQueProc

StateProcStateMachineProc

1

Transition

source

target

first
letProc

* 1

StateProcClassProcess

generation

smProc

mqProc

1

1
states

*

0..1

StateProcEventAction

StateProcInput

+SigName

StateProcOutput

+SigName

StateProcChannel

+name

StateProcChannelParameterList

+size

chanList1

StateProcChannelParameter

+name first

item

1

*

StateProcDatatype

+name
datyStateProcDatatypeItemList

+name

StateProcDatatypeItem
+name

first dtItem1 *

StateProcSingleCheckStateStateProcExistCheckStateStateProcForAllCheckState

StateProcAndStProc
* guards

StateProcGuard

Figure 4: The CSP metamodel.

check fails), FDR2 will generate counter-examples that can be used to pin-point
the error that caused the property to fail.

3 Model transformation (generating CSP from xUML)

In order to use model transformation technology to generate a CSP model,
amenable to formal verification, from the original xUML model, we need to
define a meta-model. Basically, a meta-model defines a structure that models
must conform to. For instance, a correct model representing the transformed CSP
model, must conform to the meta-model (structure) that we have defined for
CSP, which will be detail discussed in the following section.
 With a target meta-model specified, we define translation rules that are executed
automatically. These rules are composed of input and output elements. Input
elements correspond to elements found in the xUML model. The output defines
what element this particular input should be transformed to. In particular, we have
used the Epsilon tool-set for implementing the transformation of the model.
 In our work, we have used two different types of transformation. Firstly, we
use a model-to-model transformation for generating a target CSP model from the
source xUML model. Secondly, we use the newly created CSP model to define a
model-to-text transformation that generates code, which can be analysed with the
FDR2 model-checker.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

820 Computers in Railways XII

3.1 CSP metamodel

As described previously, the CSP metamodel is shown in Figure 5. This meta-
model bears several similarities to the works of Bisztray et al. [19] and Treharne
et al. [14], in particular the use of the Datatype and DatatypeItemList classes. Like
[14], we model all event and their types, e.g., the event read.ih?x corresponds to an
instance of Input for the channel called read, which has two EventParameters, ih,
and x. Modeling this aspect is especially important for our use which requires
communication of CSP events with different handlers of instance processes. In
addition, the metamodel also contains support for localized definition
(StMachineProc), which is convenient for representing the behaviour of xUML
state machines.
 There are however significant differences. A major difference is that the
AndStProc, MsgQueProc, GlobalVarProc classes are employed to describe the
concurrent state machine, message queue and global variables of the class,
respectively. In CSP the process can only refer to its own variables (there are no
shared variables), which results in a lot of difficulties in the transformation of
xUML models with state information. In favour of simplifying the
transformation, the above classes, associated with the global variable and
message queue of xUML classes, are explicitly introduced.

3.2 Transformation rules

Based on the meta-models for xUML and CSP, we construct transformation rules.
The general procedure used for generating CSP models, out of xUML models, is
outlined in Algorithm 1. This basically consists of the following transformations:
 Translation of class instances,
 Translation of control flow in the state machines,
 Translation of the signal queue modelling the external environment,
 Translation of global variables for storing state values and attributes of

state machines,
 Composition of the all transformed process into the final process SYS

(representing the global execution system).
 For the purposes of readability we only discuss the transformation of class
instances and their associated state machines found in the xUML model.

Algorithm 1. An outline for generating CSP for object instances.
1 for all c in class of xUML model m do

2 if c has a state machine sc then

3 <c>_SCTRL(ih) = let /*state machine behavior for instance handler ih*/

4 for all states, s, in sc do

5 <c>_STATES= receive.ih?x ‐> if (x==trigEvt) then

6 else if …

7 else <c>_STATES

8 end for

9 within /*initial _STATES process*/

10 <c>_QueueS(ih, s) = (#s<M)&generate.ih?x ‐> … /* the message queue associated with sc*/

11 [](#s>0)& receive.ih!head(s) ‐> …

12 <c>_GStVar(ih,v) = … /*the global variable process to store the state value of sc*/

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 821

13 <c>_Atribute(ih, w) = … /*the global variable process to store the attribute value of sc*/

14 end if

 /*Composition of all instances in <c>_HANDLER*/

15 SYS=(|||ihHANDLER <c>_SCTRL(ih)){|generate,...|} (|||ihHANDLER <c>_QueueS(ih, s))

 {|...|} (|||ihHANDLER <c>_GStVar(ih,v)) {|...|} (|||ihHANDLER <c>_Atribute(ih, w))

3.2.1 Transforming the class instance
A class instance, either active or passive, is translated into a controller process.
In our translation from xUML to CSP, each class becomes a process
specification <c>_SCTRL(ih), as shown in line 3 of Algorithm 1. Each one of
these processes consists of four parallel parts: the first part is the translation of
the state machine associated with class (lines 3 to 9), the second part formalises
the state machine inherited from the superclass (the detail discussion is omitted
here for conciseness), the third part models the message queue associated with
the state machine as an event pool (lines 10 to 11), and the fourth part denotes
the global variables used to store the state location and update the value of the
attribute of the state machine (lines 12 and 13), respectively. Finally, the CSP
code associated with the composition of all instances is given in line 15.

3.2.2 Transforming the state machine
In this section, based on the semantics of the xUML state machine, we design a
transformation of the xUML state machine model to a CSP specification in a
compositional manner. Our transformation rules are designed to inductively
process the three types of state found in xUML: basic states, OR-states and
AND-states. The core transformation rules (defined using the Epsilon
Transformation Language (ETL) of the Epsilon tool) are presented is Listing 1.

1 operation StateMachine2CTRLProcess (sr : UML!StateMachine)
2 : CSP!StMachineProc {
3 var root : new CSP!StMachineProc;
4 root.ProcID := sr.name + '_CTRLS';
5 var states := UML!Vertex.all.select
6 (sm1|sm1.containingStateMachine() = sr);
7 for (st in states){
8 var Cont := st.container;
9 if (Cont.state.isDefined()) {
10 var stProc : new CSP!StateProc;
11 if (Cont.state.isOrthogonal) {
12 SimConcurent2StProc(st, sr, stProc);
13 } else {
14 SimComp2StProc(st, sr, stProc);
15 }
16 root.letProc.add(stProc);
17 } …
18 }
19 var startP : new CSP!StateProc;
20 startP := getStartState(sr);
21 root.first := startP;
22 return root;
23 }

Listing 1: Transformation rules for the state machine.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

822 Computers in Railways XII

 The operation StateMachine2CTRLProcess is responsible for transforming
the xUML state machine into a localized (let … within) process. In terms of our
CSP metamodel, this mainly involves a creation of new instances of
CSP!StMachineProc. In line 4, we set the name of the name of state machine,
e.g., track_CTRLS. From lines 7 to 18, each of the states of the state machine are
iterated and operations are called to transform the state types.
 Note that st, sr, stProc are process parameters and denote the instance of
UML!Vertex, UML!StateMachine and CSP!StateProc, respectively. Each
application of the above operations returns a process instance stProc, which is
added to the localized process by the statement root.letProc.add(stProc).
Finally, we compute the initial state of the class diagram using the
getStartState operation and we link the new process to the original root.

4 Formal analysis of an interlocking model

In this section we exemplify the verification of the xUML Micro interlocking
shown in Section 2.1. Listing 2 illustrates a partial translation of the point state
machine (presented in Figure 4(b)) in terms of CSP. Lines 9 to 18 denote the
process normal_detected_undefined_STATES, which reacts to the external
event tout (modelling the time event after (30)) and reaches the target process
error_STATES. At the same time the concurrent process
normal_requested_right_STATES, representing the behaviour of concurrent
region request, is terminated by the process STOP (shown in lines 19 to 23). The
resulting process STOP||| error_STATES is equivalent to error_STATES, which is
used to model the transition from state undefined to stop. The synchronization
communication statement envGenerate.ih?ok is used to keep the consistent pace
between the concurrent states, i.e., request and detected.

1 point_CTRLS(ih) = let
2 Initial_0_STATES=
3 normal_STATES
4 normal_STATES=
5 normal_requested_Initial_0_STATES
6 |||
7 normal_detected_Initial_0_STATES
8 …
9 normal_detected_undefined_STATES=
10 receive_normal_detect.ih?x ->
11 if(x==tout) then
12 write.ih!error_STATE ->
13 envGenerate_detected.ih?ok ->
14 error_STATES
15 else if(x==at_right) then
16 ……
17 else if(x==at_left) then
18 ……
19 normal_requested_left_STATES=
20 receive_normal_request.ih?x ->
21 if (x==tout) then
22 envGenerate_requested.ih?ok -> STOP
23 else if(x==to_right) then …
24 error_STATES=

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 823

25 receive.ih?x: EVENT ->
26 envGenerate_detected.ih?ok ->
27 envGenerate_requested.ih?ok -> error_STATES
28 within Initial_0_STATES

Listing 2: Partial CSP code for the state machine point.

 The CSP code for the composition of all instances in the Micro interlocking
model is shown below. Here, different instances of track (i.e., t1, t2, t3), route
(i.e., r1, r2), point (i.e., p1) and signal (i.e., s1) are executed in parallel.

SysCTRL =
(point_CTRLS(p1) ||| signal_CTRLS(s1)
|||track_CTRLS(t1) |||track_CTRLS(t2)
|||track_CTRLS(t3)|||route_CTRLS(r1)|||route_CTRLS(r2))

[|{|envGenerate, envGenerate_detected,
 envGenerate_requested|}|]

(element_CTRL_point_CTRL(p1)|||element_CTRL_signal_CTRL(s1)
|||element_CTRL_track_CTRL(t1)
|||element_CTRL_track_CTRL(t2)
|||element_CTRL_track_CTRL(t3))

 To demonstrate the verification approach, we analyse the model against a
very simple property. Basically, we check if the interlocking model never gets to
a deadlock situation – where no routes can be further reserved or cancelled.
Deadlock checking is implemented with respect to the processing of signals in
active objects. For example, we need to check that

 | |
||

externalGenerate
SYSLinkSysState ExternalSignals

is deadlock-free. The following partial listing shows the corresponding CSP
process ExternalSignals, which is used to define the property.

External_Point_p1 = externalGenerate.p1!at_right ->
externalGenerate.p1!to_right -> external_Point_p1
……

 The verification results obtained in the FDR2 tool are shown in Figure 5.

Figure 5: Snapshot of deadlock-free verification in the FDR2 tool.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

824 Computers in Railways XII

5 Conclusions and future work

Modelling languages, like Executable UML (xUML), can be used for the
definition of railway interlocking systems. In particular, modelling languages
typically use testing and simulation of the analysis of the system. They tend not
to provide analysis based on formal, more rigorous, methods. This is especially
needed for the analysis of safety-critical systems, like railway interlockings.
 In this paper, we have presented our approach towards the formal analysis of
railways signalling specified with xUML. Our approach focuses on the use of
model transformation, an integral part of Model-Driven Engineering. Starting
from an xUML model, we translate that to the Communicating Sequential
Process (CSP) language, used as input to the FDR2 formal verification tool. This
enables the formal analysis of the model using FDR2.
 Future work will mainly focus on the provision of a transparent verification
methodology. For instance, currently, the verification results of the analysis of
the system are provided in terms of the CSP model. We want to be able to: (i)
specify verification properties in terms of the xUML model; (ii) generate
counter-examples, executions of the model that violate the property, provided by
FDR2 in terms of the xUML model (using sequence diagrams of UML).

Acknowledgements

The research is supported from the National Science Foundation of P. R. China
under grant No. 60634010, the State Key Laboratory of Rail Traffic Control and
Safety of Beijing Jiaotong University within the frame of the project (No.
RCS2008ZZ005) and the Technology Funding Project (Beijing Jiaotong
University, No. 2007RC101，2007XM004).
 This research is also funded by the European Commission via the INESS
project, Seventh Framework Programme (2008-2011).

References

[1] European Committee for Electrotechnical Standardization (CENELEC).
Railways Applications: The speciation and demonstration of dependability,
reliability, availability, maintainability and safety (RAMS), 1997.

[2] Jouault, F., Alliaire, F., Bézivin, J., et al., ATL: A model transformation
tool. Sci. Comput. Program, 72(1-2), pp. 31-39, 2008.

[3] http://www.eclipse.org/m2m/atl/atlTransformations/
[4] Varró D., Automated formal verification of visual modeling languages by

model checking. Softw. Syst Model, 3(2), pp, 85-113, 2004.
[5] Extensible Platform for Specification of Integrated Languages for Model

management (Epsilon). http://www.eclipse.org/gmt/epsilon
[6] http://www.eclipse.org/gmt
[7] Hoare, C. A. R., Communication Sequential Process. Prentice-Hall,

Englewood Cliffs, 1985.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 825

[8] Abrial, J. R., The B Book: Assigning programs to meaning. CUP, 1996.
[9] Software Design Group at MIT: Alloy Analyser 4.1.2, 2008.
[10] Holzmamm, G. J., The model checker SPIN. IEEE Transactions on

Software Engineering, 23(5), pp. 1-17, 1997.
[11] http://www.fsel.com
[12] Cimatti, A., Giunchiglia, F., Mongardi, G., et al., Formal verification of a

railway interlocking system using model checking. Formal Aspects
Comput, 10, pp. 361-380, 1998.

[13] Garmhausena, V. H., Campos, S., Cimatti, A., et al., Verification of a
safety-critical railway interlocking system with real-time constraints.
Science of Computer Programming, 36, pp. 53-64, 2000.

[14] Treharne, H., Turner, E., Paige, R. F., et al., Automatic generation of
integrated formal model corresponding to UML model. 47th International
Conference, TOOLS EUROPE 2009, pp. 357-367, 2009.

[15] Hansen, H., Ketema, J., Luttik, B., et al., Towards model checking
executable UML specification in mCRL2. Innovation in Systems and
Software Engineering, 6(1-2), pp. 83-90, 2010.

[16] Raistrick, C., Francis, P., Wright, J., et al., Model Driven Architecture with
Executable UML. Cambridge University Press, Cambridge, 2004.

[17] OMG Unified Modeling Language: Superstructure, version 2.0 – final
adopted specification, August 2008. http://www.omg.org.

[18] Scatergood, B., The semantics and implementation of machine-readable
CSP. PhD thesis, University of Oxford, 1998.

[19] Bisztray, D., Heckel, R., Ehrig, H., Verification of architectural refactoring
rules. Technical report, University of Leicester, 2008.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

826 Computers in Railways XII

