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Abstract 

In this study, model checking is used to generate a suite of test sequences to 
validate whether the System Under Test (SUT) satisfies the defined safety 
properties. Firstly, a Coloured Petri Net (CPN) model is abstracted and derived 
from the system requirement specification of the SUT with a hierarchical 
modelling approach. A state space analysis is used to verify the model with 
respect to a set of correctness criteria that include the absence of deadlocks and 
livelocks. Secondly, some system safety properties defined by the experts are 
described with a non-standard query and extended computation tree logic. 
Finally, based on the model without deadlocks and livelocks, the negation of 
safety properties could be checked by analyzing the occurrence graph and the 
strongly connected components graph of the model. If the model does not satisfy 
the specified property, the process of model checking could return some 
counterexamples. From these counterexamples, the nodes and directed arcs that 
include the interface information are picked out as the interface messages, which 
are used to construct a test sequence. A case study of using this method on a 
railway control system is presented, where the CPN Tools is used to model and 
generate test sequences. All reachable states are analyzed to detect violations and 
generate the safety related test sequences, which include the required data to be 
executed on the SUT. The result shows this method is time-saving, labour-saving 
and can guarantee the conformance between the SUT and the safety properties. 
Keywords: model checking, test sequence generation, CPN, railway control. 
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1 Introduction 

In the ‘computer science’ sense, safety is defined as nothing bad happening [1]. 
Safety requirements are those properties that none of the paths in a model satisfy. 
To check a model for the absence on all paths of specific behaviour means that 
effectively all paths in the model have to be explored. In order to check for the 
absence of a property, exhaustive testing of all paths for a safety property is 
necessary but often infeasible [2]. It is better to verify these properties using model 
checking [3]. In another sense, safety is defined as freedom from unacceptable 
levels of risk of harm. As a safety critical system, the railway control system 
demands greater safety and reliability than other control systems and should not 
contribute to hazards [4]. Hazard analysis is used to identify hazards and their 
causes in the safety life-cycle. We can get some failure modes that may cause 
accidents by Failure Mode Effects Analysis (FMEA) [5]. We want to increase the 
level of railway system safety by testing the system’s ability to defend failure 
modes, which are called safety properties in this study.  
     The use of model checkers for automated testing was originally proposed by 
Callahan et al. [2] and Engels et al. [6], and since then several different methods 
to create test sequences with model checkers have been proposed. There are two 
main categories of approaches to test sequence generation with model checkers 
[7]: the first category uses special properties that are intended to be violated by a 
model [8–10]. These properties are called trap properties, and express the items 
that make up a coverage criterion by claiming that these items cannot be reached. 
For example, a trap property might claim that a certain state or transition is never 
reached. A resulting counterexample shows how the state or transition described 
by the trap property is reached. This counterexample can be used as a test 
sequence. The second category of test sequence generation approaches uses 
mutation to change a model such that it violates a given specification [11–13]. 
Here, the model checker is used to illustrate the differences between changed 
models and the original model. 
     The model checkers of Cad SMV, NuSMV, NuBMC and SPIN have been 
used to generate the test sequence [7, 8, 11, 12, 14, 15]. To the best of our 
knowledge, CPN Tools have not been used in this area, one main reason is that 
the latest version of the CPN model checking tool can only determine the 
correctness of temporal logic formulas, and no counterexample is available. Men 
and Duan [16] extended the CPN Tools, and made it possible to give the 
counterexample of the model checking result.  

2 Approach description 

Normally, a model checker is used to analyze a finite-state representation of a 
system for property violations. If the model checker finds a reachable state that 
violates the property, it returns a counterexample, a sequence of reachable states 
beginning in a valid initial state and ending with the property violation. We base 
our method on two ideas. The CP-net is used to compute expected outputs and 
construct the test sequence.  
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Figure 1: The test sequence generation process. 

     The general test sequence generation method is shown in fig.1. Given a 
specification, it is first translated into the model of CPN. A set of test predicates 
is then picked out from the specification depending on the coverage criterion. 
These test predicates are generated from safety properties. The negation of a test 
predicate is called a trap property. CPN Tools is run on the model to see if the 
negations of test predicates are ever violated. If some of the test predicates are 
violated then the corresponding counterexample, produced by the model checker, 
can be used to generate a test sequence. Those test sequences compose one test 
suite and are guaranteed to cover the corresponding test predicate in the 
specification. Our target is to construct a suite of safety property test sequences, 
where a test sequence is a sequence of inputs and outputs In the following we 
present a summary of our test generation approach. 

2.1 Step 1: Safety properties description using ASK-CTL 

FMEA is widely used to get system failure modes [5]. These failure modes may 
cause accidents, which may do great harm to human beings. System safety 
property test sequences are used to test whether the system can avoid getting into 
these failure modes. For example, one of the potential RBC failure modes is that 
RBC does not terminate a communication session after receive the massage 156 
(Communication session termination) from onboard. Its related safety property is 
that RBC terminates a communication session after it receives the massage 156. 
     Generally, trap properties can be converted to Computation Tree Logic 
(CTL), Linear Temporal Logic (LTL) or other format depending on the model 
checker used. CPN Tools use ASK-CTL, which is a CTL-like temporal logic. 
The logic is an extension of CTL [17] which is branching time logic. Ammann et 
al. [11, 18] described safety properties with CTL following a format of 
AG(SafetyInvariant), where SafetyInvariant is a safety invariant. Then two broad 
categories of mutation operator are used to generate failing tests and passing test.  
     In this study, trap properties are used to construct safety property test 
sequences. Similar with Gargantini and Heitmeyer [8], we use a safety property 
P to describe a predicate. The predicate can be a failure mode state that cannot be 
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got into after some conditional events happen. Because our goal is not to verify P 
but to construct a test sequence from P, we should translate the negation of P’s 
premise into ASK-CTL into the format of 0, | ( ( ))M S Inv not P , which means 

that it start form the initial state, and the safety property P will never happens. 
All the safety properties P can be written in the following format: 
INV(OR(NOT(Condition)), EV(Safe state)). It means that it is always true that if 
the condition event happens, then a safe state will eventually be reached. 

2.2 Step 2: SUT model and its environment models 

Train control system consists of some subsystems, such as Radio Block Centre 
(RBC), Onboard and Interlocking. Anyone of them could be the SUT and its 
environment systems include all of the sub-systems which have Input/Output 
(I/O) interface with SUT. Every environment model can read its script file and 
get the input messages set of SUT. An environment model can input an unfixed 
sequence of input messages to SUT. When an environment model receives a 
message from SUT model it can send confirm message automatically if it is need 
to be confirmed. The SUT model described complexly using CPN, begins 
execution in some initial state and then responds to each input message in turn 
by changing state and by possibly producing one or more output messages.  
     Every message in an input message set of SUT is made up by some variables. 
Values of these variables should be abstracted, for example, a variable named 
D_LRBG described in [19] means the distance between a Last Relevant Balise 
Group (LRBG) and an estimated front end of the train. The length of variable 
D_LRBG is 15 bits. It has a continuous integral value from 0 to 32767. If we 
need to test four different situations, its value set can be {“0”, “50”, “32766”, 
“32767”}, which means 0m, 50m, 32766m and unknown, when its scale is set to 
be 1m. Given a message Mi, we should get a message set SMi = {mi1, mi2, …, 
mij…} ( 0  ij SM  ). /SMi/ means the number of elements in SMi. And mij is a 

possible combination of values of all the variables in Mi. SMi covers all the 
combinations of values of all the variables in Mi. Suppose a scenario includes N 
kinds of input messages M1, M2, M3,…, MN, we need to get SM1, SM2, SM3,…, 
SMN and create the set of INF = {inf1, inf2, inf3,…} for all possible input script 
files. For example, one script file in INF could be inf1 = {m13, m22, m31, …, mN3}, 
and formula (1) means the number of all the possible files. 
 

 
1

N

i
i

INF SM


  (1) 

2.3 Step 3: Deadlocks and livelocks analysis 

Regarding the analysis below needs to prove system correct termination, all the 
deadlocks and livelocks in model should be detected. The finding of self-loop 
terminal markings is crucial for correctly expressing the CTL-based formulae 
used to verify the safety properties. In Occurrence Graph (OG), dead markings 
include system correct termination or deadlock states. Deadlocks states should be 
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checked out from dead markings. A livelock is detected, when the state space 
contains a cycle that leads to no markings outside the cycle. In this case, once the 
cycle is entered it will repeat forever. A convenient way to check the absence of 
livelocks is to study an automatically generated Strongly Connected Components 
Graph (SCCG) with the method given by Katsaros [20].  

2.4 Step 4: Counterexample generation via state space 

The latest version of CPN model checking tool can only determine the 
correctness of temporal logic formulas, and not counterexample is available. In 
CPN Tools, there are two model checking functions: eval_node and eval_arc, 
which is used to verify state formulas and transition formulas. Men and Duan 
[16] extended the CPN Tools, and made it possible to give the counterexample 
of the model checking result. Another method to get special counterexample for 
trap property P mentioned above is to analyze the state space using ML 
language. If the model checking result of trap property 0, | ( ( ))M S Inv not P  is 

violated, we can find its counterexample in the state space which satisfy safety 
property P = INV(OR(NOT(Condition)), EV(Safe state)). Firstly, we can find out 
all the condition states which satisfy Condition, and all the safety states which 
satisfy Safe state. Secondly, we need to find a route R2 from a condition state to a 
safety state. If R2 is found, then the route of R1 + R2 is the counterexample, 
where R1 is the route from the start state to the condition state.  

2.5 Step 5: Test suite creation 

Suppose a safety property was got in step 1, a SUT model and a set of INF = 
{inf1, inf2, inf3,…} were got in step 2. Each time, we choose an infi from INF, and 
implement step 3 and step 4. If the trap property is violated, the counterexample 
can be got. If the loop executes |INF| times, the trap property is satisfied and the 
counterexample cannot be got, the test sequence for this safety property cannot 
be generated. All the states in a counterexample should be scanned in sequential 
order. Some of these states include some I/O messages of SUT. I/O messages 
should be written into a file, which will be used to generate test sequence. After 
we get a set of safety properties, we can generate a suite of test sequences. For 
each safety property that it processes, we should check whether the property is 
already covered by one or more existing test sequences. If so, it proceeds to the 
next property. If not, we should transform the counterexample generated into a 
test sequence. If we find that a new test sequence t2 covers all sequences 
associated with a previously computed test sequence t1. In this situation, the test 
sequence t1 is discarded because it is no longer useful.  

3 Case study 

To evaluate the correctness of a railway control system implementation in new 
lines, black-box testing could be used to determine whether the implementation, 
given a sequence of system inputs, produces the correct system outputs. 
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However, these function test sequences do not concentrate on testing the safety 
properties of the SUT. Therefore, a safety property-oriented test sequence 
generating method is required. In this case study, RBC is chosen as the SUT and 
the scenario of Start of Mission is chosen as the example scenario. 

3.1 Safety properties in the scenario of start of mission 

Suppose we got four potential RBC failure modes in the scenario of Start of 
Mission using FMEA. Four corresponding safety properties which need to be 
tested are listed as follow: 
1. RBC should terminate a communication session after it receives the 

massage 156. 
2. After RBC receives the valid position report from onboard, and there is not 

train’s LRBG in its recorded balises list. RBC should send the message 24 
(general message) to the onboard, in which the packet 24 (session 
management packet) is used to terminate communication session.  

3. If RBC receives a position report and the position is unknown. RBC should 
send message 24, which includes “position unknown” to onboard. 

4. If RBC receives a valid position report from onboard, and there is a train’s 
LRBG in its recorded balises list. However, there are some points between 
the LRBG and the estimated front end of the train. RBC should send 
message 24, which includes “position unknown” to onboard. 

     These safety properties need to be described by ASK-CTL following the 
specification formats: INV(OR(NOT(Condition)), EV(Safe state)), where 
Condition and Safe state can be described complexly using ML language. For 
example, for the safety property 1, Condition is that RBC receives the message 
156 (Communication session termination) and Safe state is that RBC terminates 
the communication session. 

3.2 CPN model for a railway control system 

CPN extended the function of PN, inducing data structure and hierarchical 
decomposition with ML language, used for modelling the behaviour of 
processes, systems and components. CPN serves data indicating colour on every 
token. The arc in it should be with an arc–inscription, defining the transform 
condition between place and transition. Schulz et al. [21] defined four different 
types of nets construct railway control system model. As shown in fig. 2, we 
defined three types of nets, context net, process net and function net. Context net 
describes the system architecture and is depicted on the uppermost level. The 
next level is formed by the process net. This level defines what functions can be 
passed in what sequence. Function nets are depicted on the lowermost level and 
implement the function modules in the process net. Fig. 3 presents the top level 
CP-net that includes substitution transitions of all the three sub-systems. This net 
corresponds to the representation of the system architecture.  
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Figure 2: The hierarchical structure of CP-net. 
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Figure 3: Context net level of CP-net. 

     We just build the environment sub-systems which exchange information with 
RBC in the scenario of Start of Mission. For example, if there is no information 
to be exchanged with neighbour RBC in the scenario of Start of Mission, the 
neighbour RBC model does not need to be built. RBC is the SUT sub-system. 
Interlocking and Onboard are the environment sub-systems. Places between the 
SUT sub-system and the environment sub-systems represent the I/O interfaces of 
RBC. On this level, all the interfaces are defined as uni-directional channels.  
     Environment sub-systems just need to read the script file and get the input 
messages set of SUT at the very beginning. It should send a message when a 
stimuli message needs to be inputted into the SUT. For example, after an 
environment sub-system received the message from the SUT, it chooses 
randomly a message from the input messages set and send it to the SUT. The 
function of environment models is not complex, it does not need the function net 
for an environment sub-system and all of its functions can be described in a 
process net. In the scenario of Start of Mission, we modelled totally seven kinds 
of messages, which need to be sent to RBC from onboard. For example, 
{MS=155,VRS=[{V_N="NID_ENGINE",V_T="201"}]} means message 155 
(initiation of a communication session), which can be written into onboard script 
file, where the variables of L_MESSAGE and T_TRAIN were omitted.  
     Because our RBC model does not judge message length and time stamp and 
we assume they are always right. The value set of variable NID_ENGINE was 
abstracted to be {“201”} with only one possible value. Interlocking sends routing  
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Figure 4: Function net of the communication session management module. 

and point information at the very beginning, these information are changeless. 
Using the method mentioned in step 2, we got 18 possible script files for onboard 
and 1 possible script file for interlocking. 
     The SUT model needs to describe the complex behaviours. It is hard to 
describe all of the functions in only one net. So the functions of SUT model 
should be described by two levels, process net level and function net level. 
Process net of SUT defines what functions can be passed in what sequence and 
function nets implement the function modules. For example, fig. 4 shows a 
function net, which describes the communication session management function 
of RBC. RBC will receive three main communication messages, which includes 
message 155, message 156, message 159 (session established). After RBC 
receives the communication messages, it should change the communication state 
recorded in the communication state list (in the place of ConSt) and output some 
messages according to [18]. After a communicate session is established, it is 
allowed to give messages to application via the place of RAppTg. 

3.3 Counterexample and test sequence generation 

All the experiments were performed on a 2.4 GHz Pentium 4 processor, with 512 
MB of main memory. This computer is good enough to generate a full state 
space. Its state space size was related with the environment script files when the 
CP-net is fixed. The biggest OG has 33690 nodes and 123774 arcs. It spent 627 
seconds to generate the biggest full state OG and 10 seconds to generate the 
SCCG. The deadlocks and livelocks analysing is crucial for correctly expressing  
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Figure 5: Model checking trap property process of safety property 1. 

the CTL-based formulae. Before model checking, deadlocks and livelocks 
should be detected using the method given in step 3. Then all the safety 
properties should be translated to the trap properties and be verified by model 
checking. Fig. 5 shows the whole process of model checking trap property 
translated from safety property 1. ConSTlist is used to return the communication 
state list, which records some train identifiers and their communication states. 
select_v can select a variable in a message by variable name and return its value. 
findSnMess can judge whether RBC receives a specific message with both a 
given train identifier and a given message identifier. DisConnect can judge 
whether the connection session is disconnected. Operator NF(“rcv disconnect 
message”, rcvDisCon) is used to describe the condition of safety property 1. 
Operator NF(“change to init state”, DisCon) is used to describe the safety state 
of safety property 1. The trap property 1 can be described using trapPro. Model 
checking is performed by eval_arc and the result is false. If the trap property is 
violated, we can get a counterexample using the method mentioned in step 4. 
Fig. 6 shows the process of selecting I/O messages in counterexample, which can 
be used to construct test sequence. In an acquired message, some variables were 
omitted. These variables need to be added manually to construct test sequence. 
For example, the variable of T_TRAIN in the first message M0 should be assigned 
with a random value t0. We can get formula of 0 , (0 )it t T i i    , where ti is 

the value of T_TRAIN in Mi, and T means a communication cycle. 

3.4 Test suite generation 

Repeating this process for all trap properties and calling the model checker only 
on those trap properties that are not covered we derive the reduced test suite  
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Figure 6: Process of getting the I/O messages of trap property 1. 

Table 1:  Test sequences created when monitoring trap properties. 

no. input number output number covers 
1 4 3 1 
2 6 4 1,2 
3 5 4 3 
4 5 4 4 

 
given in Table 1. The table lists for each test sequence the safety property it was 
created for as well as all other safety properties that were covered. The I/O 
number is given as the number of I/O messages in a counterexample. As the 
example shows, the counterexample created for the second trap property also 
covers trap property 1. As mentioned in step 5, the counterexample 1 should be 
discarded. The reduced test suite includes test sequence 2, 3 and 4, which still 
covers all the safety properties. 

4 Conclusion 

This work’s contribution is a systematic approach in the safety property test suite 
generation for railway control system using CPN tools. We proposed a notion of 
safety property P with respect to a failure mode. We developed safety property 
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coverage criteria based on failure modes and operators from ASK-CTL. To the 
best of our knowledge, the model checking ability of CPN Tools was firstly 
applied in generation of safety property test sequence suite. We showed how to 
use CPN to generate test sequence suite that satisfy a given safety property 
coverage criterion. Finally, we demonstrated the feasibility of our method via 
application to an example. These early results demonstrate both the method’s 
potential efficiency and its practical utility.  
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