

Modelling and design of the formal approach
for generating test sequences of ETCS level 2
based on the CPN

X. Zhao1, Y. Zhang1, W. Zheng2, T. Tang1 & R. Mu2
1State Key Laboratory of Rail Traffic Control and Safety,
Beijing Jiaotong University, China
2School of Electronic and Information Engineering,
Beijing Jiaotong University, China

Abstract

ETCS Level 2 (European Train Control System Level 2, ETCS-2) has drawn
particularly attention from researchers and industries. A new CPN model-based
formal approach for test cases and sequences generation is proposed in this paper
to increase the test automation degree of the ETCS-2 system and subsystems.
 In this paper, a set of modelling rules is presented firstly to make the
Coloured Petri Net (CPN) model more suitable for test generation. Then, an
automated test approach is described in detail, which includes an automatic test
case generating algorithm and a type of automatic test sequence searching
algorithm. The generated set of test cases satisfies specified coverage. The test
sequence searching algorithm guarantees the results satisfying the minimum
number of test sequences covering all test cases. The output of this approach is a
set of well-formed XML (Extensible Markup Language) file to increase the
automation degree of the test executing process. Finally, a partial model of
ETCS-2 On-Board subsystem is built and analysed using the CPN Tools as a
case study. The model-based formal approach is implemented on this model and
the test cases and test sequences are all generated in a form of XML. The
conclusion show that the CPN-model based testing approach can be used to
improve the automation of the testing procedure and the generated test cases can
meet the relative requirement.
Keywords: ETCS-2, CPN, test generation, formal method.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 723

doi:10.2495/CR100661

1 Introduction

In recent years, the safety-critical system has been come closer to peoples` life.
Safety critical system (SCS) is a computer, electronic or electromechanical
system whose failure may cause injury or death to human beings as in Chen [1].
ETCS-2 is a typical SCS. In order to ensure the correctness of its behaviour
function, there are two commonly used techniques: validation and testing.
Testing is the only method which can be used to verify the dynamic behaviours
of SCS in running time as in Wegener et al. [2].
 With more and more attention has been paid to the testing automation of the
Safety-Critical System. How to improve test automation and testing efficiency,
and reduce testing costs and risk factors of the testing process has increasingly
become the focus and hot spots of the research in the testing field. Model-based
testing (MBT), which is to compare the I/O behaviours of a valid behaviour
model with that of a system to be tested (the system under test, SUT), has been
closely watched in recent years.
 Model based test generating, which is a method to generate the test cases and
test sequences according to the formal model of SUT, is the most important
content of MBT. Since 1970s, there had been many test generating methods
based on variety of models, such as U-method in Chan and Vuong [3], D-method
in Sidhu and Leung [4] and Wp-method in Fujiwara and Bochmarm [5]. But
these methods cannot describe the time constraints. Since the 1990s, with the
gradual maturity of many formal modelling theory, such as the Temporal logic in
Lamport [6], Time Input/Output Automata (TIOA) in Alur and Dill [7] and
Timed transition system in Henzinger et al. [8], many Model based test
generating methods based on these models has been presented, including Test
time Automa in Badban et al. [10] and TIOA based testing method in Hessel et
al. [9] etc. However, most of these methods can not describe the Concurrent
behaviours of the SUT, also the test cases and sequences generated through these
methods are too abstract to be executed, and the generating process is not
automatic. Kim et al. generate the test cases separately according to the control
flow and data flow on the basis of UML state charts model in Kim et al. [11].
However, its limitation on describing the communication between the numbers
of objects causes the low test generating coverage. Nogueira et al. [12] and
Helke et al. [13] did the test sequence generation based on the Communication
Sequence Process (CSP) model and Z model, but these models are too abstract
which makes the generating result more unexecutable.
 Table 1 is simply comparing among the formal modelling languages which
have been used in test generation.
 According to these advantages of CPN described in Table 1, this paper
presents a test cases and sequences generating approach on the basis of CPN, and
applies this approach to the ETCS-2 system testing. The paper is organized as
follow. In Section 2, we define the test case, test subsequence, test sequence and
test coverage degree in a formal way according to the CPN definition. In
Section 3, we describe the test generation method, including the test case
generating method, the test subsequence generating method and the test sequence

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

724 Computers in Railways XII

Table 1: Compare among the modelling languages.

Formal
Language

Modelling
Level

Verification
capability

Executable Modelling
process

Data
Type

TIOA Abstract Strong No Easy Medium
UML Abstract/Concrete No Yes Easy Rich
CSP Abstract Strong No Hard Simple

Z Abstract Strong No Hard Simple
CPN Abstract/Concrete Medium Yes Easy Rich

generating method. In section 4, a XML format for describing test cases and test
sequences is proposed. In Section 5, together with the example of On-Board
subsystem in ETCS-2. Finally, we evaluate the whole method and discuss
possible improvements in the future.

2 CPN based modelling method for test generation

2.1 Coloured Petri Net and relative definitions

Coloured Petri Nets (CPN) is an extended Petri Nets which is a graphical and
mathematical modelling tool proposed by Kurt Jensen. And it can be used to
model systems with complex procedures as in Jensen [14] and applicable to
describe many types of systems. The locations that can be used to carry
information in the graph element of CPN are showed in Fig. 1.

Figure 1: Information Location in CPN graph element diagram.

 In Fig. 1, the “INIT MARK” location in (i) carries the initialized data; the
“PLACETYPE” location in (i) carries the colour types information; the
“ACRVAR” location in (ii) carries the name of the variable to be passed; In (iii),
the “GUARD” location carries the data selection and comparison information;
the “TIME” location carries the time restriction information; while the “ACT”
location carries the data computing information. In the following part, these
locations are used to be searched for information that needed by test data
generation process.
 On the basis of the definition of CPN in Jensen [14], some relative formal
definitions will be introduced and these will be the foundation of the following
work.
 Definition 1. Test Case Based on the CPN
 A Test Case Based on the CPN is an eight-tuple TCCPN = {IA, ID, OA, OD, SC,
SCD, EC, ECD}, where:

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 725

 IA is a finite subset of input ports,
AI PN and :[()]An I PT n in .

 OA is a finite subset of output ports,
AO PN and :[()]An O PT n out .

 IA and OA must be in the same subpages: ,I O Ps s S ；

 ID is a set of the input data, and corresponding with the IA.
 OD is a set of the output data, and corresponding with the OA.
 { , , }SC SCSC GF IF IP represents the start condition, and is a finite set of

fusion places and internal input ports.
 { , , }EC ECEC GF IF OP represents the end condition, and is a finite set of

fusion places and internal input ports, where:

, ,[, ()] [, ()]

, ,[, ()] [, ()]

GF IF FS f GF FT f globle f IF FT f page

IP OP PN p IP PT p in p OP PT p out

 Both in SC and EC, the GF set and IF set can not be empty at the same time,
and the situation (GFSC＝GFEC) ∪ (IFSC＝IFEC) should not exist in one test
case.
 SCD is the data set of the start condition corresponding to SC, and ECD is the
data set of the end condition corresponding to EC.

 Definition 2. Test Subsequence
 A test subsequence is a six-tuple TSsub = {SS, SCSS, SCD, ECSS, ECD, w}，
where:
 SS is a finite set of test cases which are in order, and the order reflects the
sequence of the test cases to be executed in the subsequence. Here, tc1 represent
the first test case to be executed and tcn represents the last test case to be
executed in the subsequence.
 SCSS is a finite set of the start conditions,

1{ , }
SSSS SC tcSC GF IP , where

,1 | |
SSSC SCtciGF GF i SS which means that the start condition set

SSSCGF is

the combination of the start condition; the start condition of a test subsequence

1tcIP is the same with IP set in the first test case in the subsequence.

 ECSS is the set of end condition: { , }
SS nSS EC tcEC GF OP , where

,1 | |
SSEC ECtciGF GF i SS

 SCD and ECD is the data set corresponding to SCSS and ECSS separately.
 Note: For each subpage S, there is a test case set TCS corresponding to it. If

there is a subset sub STC TC makes the

sub, [] (0 i j<|TC |)i j sub SCi SCj ECi ECjtc tc TC IF IF IF IF

 coming into existence, then we can get a corresponding test subsequence, and
then get the executing order of the test cases in the SS set according to the IFD

information of each test case.
 w=|SS| is the number of the test cases in a test subsequence, which represents
the weight of the test subsequence and contributes to the optimizing of the test
sequence.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

726 Computers in Railways XII

 Definition 3. Test Sequence
 Test sequence is a five-tuple {TS，SCSS，SCD, ECSS, ECD}, where:
 TS is a set of test sub sequences and test cases, which is an ordered set. The
order reflects the executing order of the test cases and the test sub sequences.
Here, tc1 represent the first test case to be executed and tcn represents the last test
case to be executed in the subsequence.
 SCTS is the start condition set which is a finite set of global fusion places. If
the first one to be executed in the test sequence is a test case, then

1TS SCtcSC GF ; else if the first one to be executed in the test sequence is a test

subsequence, then
1TS SStcSC SC .

 ECTS is the end condition set which is a finite set of global fusion places. If
the first one to be executed in the test sequence is a test case,
then

1TS ECtcEC GF ; else if the first one to be executed in the test sequence is a

test subsequence, then
nTS SStcEC EC .

 SCD and ECD is the data set corresponding to SCSS and ECSS separately.

 Definition 4. Test cases Coverage Criteria – All-Edge Coverage
 A test case set satisfies all-edge coverage means that if we execute all test
cases on system CPN model, all arcs will be passed at least once. For the non-
architecture CPN model { , , , , , , , , }S P T A N C G E I , the all-edge coverage

()E S can be defined as: ()arc A arc E S .

 Definition 5. Test sequences Coverage Criteria – All test cases Coverage
 All test cases coverage means that the test sequences set should cover each
test case in the test cases set at least once.
 Definition 6. Test sequences Coverage Criteria – All Path Coverage
 According to the start condition and end condition of every test case, we can
represent the relationship using a Directed graph. All path coverage means that
the test sub-sequences set should cover all edge in the test cases set at least once.

2.2 Rules of CPN based modelling for test generation

The definitions 1 to 3 can be the generting targets. And in response to these
generation targets， 12 rules are presented in this section to regulate the
modeling process, and cover all of the information:
 Rule 1: Using hierarchical modeling approach to build a three-tier model,
including System level, Senario level and Function level, to make the model
clearer and easier to manage. Moreover, this will make the input/output type and
the port information available.
 Rule 2: In the model, the ports between different object must have INPUT or
OUTPUT option; It is not allowed that the port with I/O option existing in the
model.
 Rule 3: The data processing-related functions, such as data decomposition,
data restructuring and data searching, must be implemented with the use of
Meta-Language (ML).

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 727

 Rule 4: The Branch selection structure like: if/else and case/swich, should not
be described by the ML languange, these should be modeled using places and
transitions.
 Rule 5: All of the judgment of the data content should be reflected in the
“GUARD” location, and the Color name should be reserved.
 Rule 6: In the internal of the third level sub-pages, use Partial Fusion Places
to reflect the order information, and use nature number N to express the order.
 Rule 7: In the third level, use Global Fusion Places and Internal Ports to
reflect the relationship between sub-pages for test sequence generation.
 Rule 8: In the whole model, the color definition, the variable naming the
place naming should obey a unify rules.
 Rule 9: Exept for the arcs connected with the fusion place, the variables on
the other arcs should be belonged to the color set defined globally.
 Rule 10: The definition of the color sets should separates the input color set,
the output color set and other type of color set; So that we can recognize the
input port and output port in the model.
 Rule 11: The Fusion places is only allowed to be exsiting in the third level
model.
 Rule 12: During the color set definition, the variables should be defined with
the value range according to the specification.

3 Test sequence generation method

In this section, we first describe the integrated structure of the overall test
generating method. There are three phases: modelling, test case generating and
test sequence generating. The overall block diagram is shown as Fig. 2.
 In the modelling phase, the model must conform to the System Requirement
Specification and also satisfy the modelling rules presented in section 2, and
some model checking based verification methods are used here to make sure the
correctness and conformance of the model.

Figure 2: Overall block diagram of test generation.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

728 Computers in Railways XII

3.1 Test case generation

Based on the definition of Test Case given in section 2, the generation process
can be divided to 3 steps: (1) Generation of input ports set IA and output ports set
OA; (2) Generation of start condition SC and end condition EC; (2) Generation of
ID ，OD ，SCD and ECD (Test Data Generation)
 The main idea of the test case generating method is described as follows: In
each non-hierarchical CPN model, we first specify all input ports in the model as
a starting set and all output ports in the model as an ending set, then make use of
the APBTN algorithm to get all possible paths between these two sets to form
the path set PATH1. Second, a Path optimizing algorithm is proposed to select
valid paths and combine invalid paths into valid paths, and obtain the valid path
set PATH2. Third, an order information adding algorithm is used to add start
condition information and end condition information to PATH2. For each path in
PATH2, the start condition is the fusion places or internal input ports which can
reach to the path through a sub path, and the end condition is the fusion places or
internal output ports that can be reached from any node in the path. Then, we can
get the complete valid path set PATH3. Forth, a input and start condition data
searching algorithm is used to get the input data and the start condition data of
each path in PATH3. At last, making use of the dynamic executing property of
CPN model and the interfaces with programming languages supplied by CPN
Tools, we can get the expected output data and the end condition data.
 Until now, through the generation of ID、SCD、ECD and OD, we can get all
the test cases of the CPN model.

3.2 Test sub-sequence generation

The test cases generated last section includes the start condition and end
condition. On the basis of this information, this section and the next section will
introduce the test sub-sequence generating method and the test sequence
generating method.
 First, we explain the reason for generating sub-sequence.
 As shown in Fig. 3, we assume that the Scenario I includes eight test cases. In
the SC of TC1, the GF or IP is not empty which means that the start condition of
this case is a global one that coming from another scenario. In the EC of TC6
and TC8, the GF or IP is not empty which means that these test cases can lead to
other scenario. In the SC of the other five test cases in Scenario I, the GF and IP
is empty, so that these test cases have no information helping to organize them
directly into test sequence. But the IF of SC in these test cases is not empty and
can help to organize them into sub sequence in the internal of Scenario I, and the
sub-sequences have the information that can contribute to generating test
sequences, such as sub-sequence TC1TC2TC7TC8. Simply to say, the
target of test sub-sequence generation is to connect the test cases in each scenario
and make them having the information that can help to organizing them into test
sequence.
 Sometimes, we only need that every test case is executed just once; but
sometimes, we need that each possible path in the scenario must be executed. For

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 729

Figure 3: Relation between test cases and sub-sequences.

the two situations, two different algorithms are proposed to get different sub-
sequence sets.

3.3 Test sequence generation

On the basis of the start condition, end condition and weight information
supplied by test sub-sequences. We proposed a test sequence generation method.
The generating target is:

a. The least number of test sequences;
b. The least repeat of test cases;
c. All test sub-sequences covered = all test cases covered;

 Through this approach, we can obtain a complete test sequence set. But this
set is not the unique one. According to different requirements, we can get
different test sequence sets. For example, when first test the system, there may
be many errors existing in the system, if the test sequence is too long, it may
cause the test sequence can not be executed fully. So under this situation, the
requirement may be to generate test sequences with suitable length. For different
requirement, the algorithm can be adjusted.

4 XML based test description method

According to the generating result of section 3, the information required in the
definition of test case and test sequence has already been included. But they can
not been executed directly yet, we need an efficient description method to make
the test cases and test sequences more executable.
 XML (Extensible Markup Language) is a very suitable language for test
description which has many advantages:

 Structured, expandable, platform-independent and standardized

language for the description of data;

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

730 Computers in Railways XII

 (i) Test case format (ii) Test sequence format

 Good and suitable for formal data format for the representation of tests
and their reference data;

 Equally readable and interpretable for humans and software
applications.

 Based on these advantages, this paper proposes a XML format for test case
and test sequence, shown as Fig. 4.
 This XML format has been used as the target of the test case generating and
test sequence generating.

Figure 4: ML format for test case and test sequence.

5 Case study

In this section, we will apply the whole approach. First, according the modelling
rules presented in section 2.2 and the “ETCS system requirement specification
Subset 026” (SRS), we finished the model in System level and Scenario level,
and the function model of the Registration and Start Scenario (R&S), On Sight
mode Running Scenario (OSR) and the Logout Scenario (LO) in Functional
level.
 The result of test case generation for each scenario is shown below:

Table 2: Test case generating result.

Scenario
Places

Number
Transition
Number

Test case
Number

Coverage
Criteria

Test case
Cover

Test case
uncover

R&S 48 61 48
All-Edge
Coverage

51 3
OSR 18 15 11 21 0
LO 25 16 14 6 0

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 731

 The “Test case cover” column and the “Test case uncover” column in the
table represent the comparing result between the generating result and the
ERTMS/ETCS SUBSET 076-5-2:Test cases related to features (SUBSET076-5-
2). From the table, we can see that the generating result of On Sight Scenario and
Logout Scenario has covered all corresponding test cases in SUBSET076-5-2,
and there are only three test cases in SUBSET076-5-2 have not been covered in
Registration and Start Scenario. They are:
 (1) The On-board sub system should show driver the SB mode when it is in
SB mode;
 (2) The On-board sub system should show driver the ETCS level 2 when it is
in ETCS level 2;
 (3) When the received message has conformance error, the On-Board
subsystem should send error report to Radio Block Centre subsystem.
 Through analyzing, we found that because the functions corresponding to
these three uncovered test cases are not only belonging to one scenario, and we
modelling these functions into a separate scenario model. That is to say, these
test cases can be covered by another scenario test generating result.
 According to the test case generating result, we generate the sub-sequences
and test sequences. The result is shown in table 3 and table 4.

Table 3: Test sub-sequence generating result.

Scenario
Test case
Number

Coverage
Criteria

Subsequence
Number

R&S 48
All Test cases

Coverage

11
OSR 11 6
LO 14 6

Table 4: Test sequence generating result.

Scenario
Sequence

Subsequence
Number

Coverage
Criteria

Subsequence
Number

1. R&S 11
All Test cases

Coverage
11 2. OSR 6

3. LO 6

 The generating result shows that it satisfies all executing requirements,
because it has all test information and test data which is needed by the executing
process.

6 Conclusion

This paper has proposed a new type of model-based formal approach for test
cases and sequences generation and applied it to ETCS-2 system and
subsystems. This approach ensures the availability from three aspects. First, the
modelling rules make the system model containing all the information that
testing process needs. Second, the test cases generating method and test

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

732 Computers in Railways XII

sequences generating method make the generating process more automatic.
Third, the XML test description form helps to increase the executable degree of
the test cases and test sequences. The case study shows that this method has a
high coverage and test generating automation degree.

Acknowledgements

We wish to acknowledge the support of the National High-Technology Research
and Development Program ("863"Program) of China No. 2009AA11Z221,
National Science & Technology Pillar Program of China No. 2009BAG12A08,
and the Fundamental Research Funds for the Central Universities
No. 2009YJS013.

References

[1] Chen W., Xue Y., & Zhao C., (eds). A Method for Testing Real-Time
System Based on Timed Automata. Journal of Software, 18(1), pp. 62-73,
2007.

[2] Wegener J., Sthamer H., Jones B.F., & Eyres D.E., Testing real-time
systems using genetic algorithms. Software Quality Journal, (6), pp. 127-
l35, 1997.

[3] Chan W., & Vuong C., (eds). An improved protocol test generation
procedure based on UIOS. Proc. on Communications Architectures&
Protocols, eds. Landweber LH, Symp. ACM Press: New York, pp. 283-
294, 1989.

[4] Sidhu D., & Leung T., Formal methods for protocol testing: A detailed
study. IEEE Trans. on Software Engineering, 15(4), pp. 413-426, 1989.

[5] Fujiwara S., & Bochmarm G.V., Test selection based on finite state models.
IEEE Trans. on Software Engineering, 17(6), pp. 591-603, 1991.

[6] Lamport L., The temporal logic of actions. ACM Trans. on Programming
Language and Systems, 16(3), pp. 872-923, 1994.

[7] Alur R., & Dill D., A theory of timed automata. Theoretical Computer
Science, l26(2), pp. 183-235, 1994.

[8] Henzinger T., Manna Z., & Pnueli A., Timed transition system. Proc. of the
Real-Time： Theory in Practice, REX Workshop, eds. J.W.D. Bakker,
C.Huizing, W.P.D. Roever, G. Rozenber, LNCS 600, Springer-Verlag:
Berlin, pp. 226-251, l992.

[9] Hessel A., Larsen KG., & Mikucionis M., (eds). Testing real-time systems
using UPPAAL. Lecture Notes in Computer Science, v4949 LNCS, pp. 77-
117, 2008

[10] Badban B., Franzle M., & Teige T., Test Automation for Hybrid Systems.
Proc. of the Third International Workshop on Software Quality Assurance,
pp. 14-21, 2006.

[11] Kim Y.G., Hong H.S., & Bae D.H., (eds). Test cases generation from UML
state diagram. IEEE Proceeding-Software, 146(4), pp. 187-192, 1999.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 733

[12] Nogueira S., Sampaio A., & Mota A., Guided Test Generation from CSP
Models. Theoretical Aspects of Computing - ICTAC 2008, Lecture Notes in
Computer Science, Springer-Verlag, pp. 258-273, 2008.

[13] Helke S., Neustupny T., & Santen T., Automating Test Case Generation
from Z Specifications with Isabelle. ZUM ’97: The Z Formal Specification
Notation, LNCS 1212, eds. J.P. Bowen, M.G. Hinchey and D. Till,
Springer-Verlag: pp. 52-71, 1997.

[14] Jensen K., Coloured Petri Nets. Basic Concepts, Analysis Method and
Practical Use (Vol.1-3). Monographs in Theoretical Computer Science,
Second Edition, Springer-Verlag, 1997.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

734 Computers in Railways XII

