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Abstract

Travelling safely and comfortably on high speed railway lines requires excellent
conditions of the whole railway infrastructure in general and of the railway track
geometry in particular. The maintenance process required to achieve such excellent
conditions is largely complex and expensive, demanding an increased amount of
both human and technical resources. In this framework, an optimal scheduling
of maintenance interventions is an issue of increased relevance. In this work
a method for optimization of the tamping scheduling is presented. It is based
on a heuristic algorithm, which finds a very detailed tamping schedule where
each planned intervention is fully specified. The algorithm tries to maximize an
objective function, which is a quantitative expression of the maintenance process’s
objectives defined by the railway company. It first finds an upper bound for the
objective function value, and then returns the best feasible solution found. The
method is validated by means of a case study based on real data of the 240 km
track of a French high speed TGV line. The results presented show that the value
of the best solution found is very near to the upper bound (the difference is smaller
than 1%), with a calculation time of under 1 second using a standard computer, so
we think the heuristic has a great performance potential.
Keywords: track maintenance, heuristics, tamping, scheduling.

1 Introduction

Measuring and keeping railway geometry under control are fundamental tasks of a
railway infrastructure maintenance process. Railway geometry is representative of
the travelling comfort and the derailment risk, so if its deviation exceeds a certain
limit value, the travelling speed on that sector must be reduced. Therefore, railway
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geometry is both a measure of travelling quality and safety. For these reasons the
French railway operator SNCF has been measuring periodically the geometrical
characteristics of its high speed network since its commissioning, i.e. for more
than 20 years now. Figure 1 shows the measurements of the longitudinal levelling
(in French Nivellement Longitudinal, NL) for a 1 km track sector for the last 20
years. The NL parameter is the longitudinal mean deviation of rails in respect
to the ideal position, and it is considered representative of the general railway
geometry deterioration [1]. By default the deterioration grade increases with
time, reflecting the track geometry deterioration. Due to confidentiality reasons,
the measurement units are not shown. Degradation decrements take place only
when some maintenance intervention is performed. In figure 1 the maintenance
activities most relevant for track geometry are included: tamping interventions.
In the figure, the bar heights represent the fraction of the railway sector affected
by the maintenance activity. Tamping yields a visually obvious effect, yielding a
sudden drop in NL.

The figure shows some very interesting behaviour: in the autumn of 2001 a
tamping action has taken place. However, afterwards, an extremely fast degra-
dation of the NL has set in. Some possible reasons for such counterproduc-
tive interventions are water under ballast, adverse weather conditions, or poor
intervention quality (operator incompetence). This is a good demonstration of
the stochastic characteristic of the ageing and restoration process. The effect of
these characteristics on the proposed process model is that both the NL value
after a tamping intervention (equation 1) and the degradation speed coefficient
(equation 3) are modelled as normally distributed variables. Furthermore, in 2005
the NL improved several times (measurement line with negative gradient) but
no tamping action was registered. Possible reasons for negative increments on
NL without interventions are measurement errors, mainly offset errors, i.e. NL
is not always measured on exactly the same 200 mts. Eventually, it could also
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Figure 1: Course of longitudinal levelling degradation for a railway sector.
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be that interventions are not registered in the database. The details of how this
influences the model can be found in [2]. It can be shortly described as the addition
of stochastic noise to represent the measurement errors, and the assumption of
interventions when the negative increment is greater than a certain threshold.

Technical and human resources required for performing tamping interventions
are a major cost factor in high speed railway systems [3]. Furthermore, due to high
logistic costs constraints, most track geometry maintenance activities need to be
planned up to one year in advance.

In this context, a crucial question to be answered is the following: with the
available human and technical resources, and considering the current track railway
geometry deviation, when and where should tamping interventions be performed?
This paper presents a method for answering this question. It consists of two main
components: a track geometry deterioration forecasting method, and a heuristic
for interventions scheduling. Additionally, it needs a series of input data, such us
a database with the available track geometry measurements, some characteristics
of the tamping machines available, and the topology of the railway network to be
maintained.

Section 2 presents the proposed forecasting method, section 3 describes the
heuristic algorithm used for schedule generation, and in section 4 the method is
validated be means of a case study with real data of a French high speed line.
Finally 5 presents some concluding remarks.

2 Railway track geometry forecasting

2.1 Row data preprocessing

Railway geometry is measured periodically by means of special measuring
coaches equipped with mechanical and/or electrical sensors. As it can be observed
in figure 1, the periodicity of the measuring runs has been irregular since line
commissioning, so the first problem for forecasting railway geometry deviation is
the irregular sampling rate. To overcome this, we interpolate the measured points
using splines, and then resample with the sampling rate of the last years. This
is a compromise solution minimizing information loss in the last measurement
years and keeping the addition of artificial measurements in the first years at an
acceptable level. The resampled data is then used to tune the forecasting algorithm.

2.2 Process model

The process model used for forecasting is the one presented in [2]. It relies on 2
assumptions, namely:

1. The degradation value NLinitn achieved after the nth tamping intervention
can be described as a normally distributed stochastic variable, i.e.

NLinitn ∼ N (μNLinit(n), σNLinit(n)). (1)
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2. The evolution of the degradation value between two tamping activities can
be described by an exponential function of the form

NLinitn · ebn t−tn (2)

where n is the number of cumulated tamping interventions since track
renewal, tn is the time at which the nth tamping activity has taken place,
and bn is a is a normally distributed stochastic variable, i.e.

bn ∼ N (μb(n), σb (n)) (3)

The first assumption relies on the study on the effects of tamping interventions
on high speed railway lines presented in [1]. The second assumption is based on
the model presented in [4], which postulates that geometry degradation grows
exponentially between tamping interventions. According to these assumptions,
for the model to be applied we would need to find expressions for μNLinit(n),
σNLinit(n), μb(n), and σb (n). To obtain these functions, we need a database with
track geometry measurements on many railway sectors for many years, including
tamping activities performed. For each of the sectors recorded in the database,
the curve NLinitn · ebn t−tn that best fits, i.e. minimizes the quadratic error
for the measurements between the nth and the (n + 1)th tamping interventions,
for n ∈ 1, . . . , Nmax, where Nmax is the number of tamping interventions
performed in the lapse of time recorded in the database for that sector. In doing
so it must be taken into account that it is known that track geometry exhibits
a transient behaviour in the first months after a tamping intervention, so we do
not consider measurements taken in the three first months after an intervention.
Doing this at each sector available in the database, the mean value and variance of
NLinitn and bn can be estimated. Furthermore, it is common knowledge that the
degradation of NL depends on the annual track load rather than on time. In case
that the track load had changed within the time period registered in the database, a
transformation could be used to standardize the data, i.e. to unmake the effects of
the track load modification, basing on the results presented in [5]. The next step is
to find the functions μNLinit(n), σNLinit(n), μb(n), and σb (n) which best fit the
estimated values.

2.3 Forecasting algorithm

To describe the forecasting procedure, a few definitions are necessary:
Defining N̂L(t+h) as the forecast of NL at t+h with the information available

at time t the algorithm can be described as follows:

1. If the time elapsed since the last tamping intervention is longer than
TIME_MIN and there is no intervention planned before time t+h, then find
the function of the form of equation 2 which best fits the degradation curve
since the last tamping intervention, and obtain N̂L(t + h) by extrapolation.

2. If the time elapsed since the last tamping intervention is shorter than
TIME_MIN and there is no intervention planned before time t + h, then
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consider equation 2 with b = bn, where n is the current cumulated number of
tamping interventions, i.e. the mean value of b after n tamping interventions.

3. If a tamping intervention is planned before time t+h, then consider equation
2 with b = bn , where n is the current cumulated number of tamping
interventions, i.e. the mean value of b after n + 1 tamping interventions.

Summing up, the algorithm looks for the curve best fitting the geometry
degradation course since the last tamping intervention, but if this was too recent
it just takes the mean curve for the current number of accumulated tamping,
according to the model of section 2.2. The same happens if a tamping intervention
is planned within the forecasting horizon. For the parameter TIME_MIN a value
of one year seems to be reasonable. For a more detailed description of the
forecasting method see [6].

3 Interventions scheduling method

3.1 Problem definition

In order to formalize the problem definition, we model the railway net as a graph.
The edges are the railway tracks and the nodes are the railway switches. The edges
are in turn divided into sectors of 200 m. Then a criteria has to be established to
assess the benefit of performing a tamping intervention at each of the sectors. In
3.2 some possible objective functions are presented. Furthermore, the following
constrains has to be taken into account for scheduling tamping activities:

1. Tamping interventions take place in the night service interruptions, i.e.
approx. 4 to 5 hours per night are available.

2. The number of tamping machines for the whole railway net is limited, so at
each line the tamping machines are available for a limited number of nights
per year, i.e. N nights. These nights are in general consecutive, so we call
a tamping campaign the set of N consecutive nights at which a tamping
machine is available for a given line or net.

3. Each tamping machine has limited travelling speed STrav and tamping
speed STamping .

4. TSetUp is the preparation time needed between arrival at the starting sector
and the intervention start time and TTakeDown the time needed between
finalization of the intervention and departure to the end depot.

5. For tamping on and near switches special machines are needed. Furthermore
the first and the last 200 m of a tamping intervention are transient sectors
used to smooth the transit from a probably deteriorated sector to a fleshly
tamped one. According to expert opinion, the number of transient sectors
should be kept low. This leads to a further constraint: to minimize the
number of transient sectors, each night tamping interventions can only take
place in contiguous sectors, and they all must belong to the same edge
(switches can not be tamped).

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII  691



6. In order not to disturb normal train operations, the tamping machine must
be allocated at a side track, the so called depots, before the first scheduled
train runs. Additionally, on the fist intervention night the machine has to be
picked up from a specific depot, and after the last intervention it has to be
given back also at a specific depot.

The problem the heuristic scheduling algorithm solves is to find a feasible
solution consisting a set of N interventions (one per night) which maximizes
the defined objective function, which should be a mathematical representation
of the railway operator’s objectives. An intervention consists of the following
elements:

• An intervention number i, i ∈ 1, .., N
• Start depot Di and end depot De

• Start tamping sector Si and end tamping sector Se

Furthermore, for an intervention to be feasible, the inequality

TSI ≥ (Dist(Di, Si) + Dist(Se, De))/STravel + TSetUp

+TTakeDown + Dist(Si, Se)/STamping (4)

must hold, where TSI is the night service interruption time, Dist(Di, Si) is the
distance between initial and end depot, Dist(Si, Se) is the distance between initial
and end intervention sectors. What inequality 4 expresses is that the blocking time
must be enough for the maintenance team to travel with the machine to the inter-
vention start sector, get ready to start working (duration of the procedure to block
the track, TSetUp), perform the intervention, get ready to leave the track (duration
of the procedure to unblock the track, TTakeDown) and travel to the end depot.

For the interventions to be unambiguously defined, an arbitrary sense is assigned
to each edge, and the sectors are numbered in the sense of the edge. According to
this sector enumeration, a further constraint can be set for an intervention to be
valid: Si ≥ Se.

3.2 Objective function

The objective function is a key part of the whole scheduling method. It should
express the objectives of the railway track maintenance process, which may vary
significantly from one company to another. Next three possible implementations
are presented.

Total reduction track geometry deviation. The benefit of a tamping interven-
tion is directly proportional to the current geometry degradation NL. This
means that the degradation speed, i.e. ∂NL

∂t , is not taken into account. This
is the approach used in [7].

Expected time to failure. The benefit of a tamping intervention is inversely
proportional to the time it is going to take to reach the maximal allowable
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geometry degradation value NLmax. This time to failure can be estimated
using the forecasting method presented in section 2.

Expected NL at next campaign. Let h be the time between campaigns (in gen-
eral one year, eventually six months). Suppose we are interested in finding
out the optimal schedule for a campaign starting next week, i.e. at time
t = t . Then an estimate of the value of NL at time t = t + h, i.e.
N̂L(t + h), could also be a measure of the benefit of tamping it. The
more N̂L(t + h) exceeds NLmax, the more value it would have to perform
tamping next week. Likewise, the more NLmax exceeds N̂L(t + h), the
lesser it is worth to perform an intervention on that sector next week. The
punctual forecasting N̂L(t + h) represents the expected value. However,
being the process model stochastic (see section 2.2) a confidence interval
could also be included in the objective function.

In the case study presented in section 4 we use the expected NL at next
campaign to enunciate the objective function.

3.3 Heuristic as an optimization method

In general, to find a solution for an optimization process a process model is used.
When the model is highly complex and there is no standard optimization method,
like in this case, there are two possibilities: to adapt the model for it to fit to a
standard optimization method, or to adapt or create a new method to fit to the
model.

In the literature some approaches to the railway track maintenance scheduling
problem can be found, e.g. [7–9]. What [7] and [8] do is to adapt the process model
by relaxing some constraints and then apply commercial linear programming
optimization packages, as illustrated by approach B in figure 2. Our approach is
more similar to [9]. We take the model as described in 2.2 and apply a heuristic
algorithm, i.e. approach C in figure 2. The heuristic returns two results: an upper
bound for the total solution value, and a feasible solution, namely the best one
it has been able to find. The upper bound is a value which is guaranteed to be
equal or greater than the optimal feasible solution. The results presented in section
4 show that the value of the best solution found is very near the upper bound
(the difference is smaller than 1%), which gives us a hint of the heuristic’s great
performance potential.

3.4 Heuristic

According to the problem definition in 3.1, the heuristic can be described as
follows:

1. Let an intervention be Maximal if it is feasible, i.e. equation 4 holds, and
changing its Se for the next sector, i.e. Se would turn the intervention
into infeasible, i.e. inequality 4 would no longer hold. The first step of
the heuristic is to find for each edge i the set of all maximal interventions
and calculate for each of them its value according to the objective function
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Figure 2: Some possible approaches to complex optimization problems.

described in 3.2. Remember that as stated in 3.1 all interventions must start
and end in the same edge, i.e. in the same track, so the correspondence is
unambiguous.

2. Let im be the number of edges of the graph representing the network. The
second step is to find, for each edge i ∈ 1, . . . , im and each n ∈ 1, . . . , nmi ,
where nmi is the number of interventions needed to tamp the whole edge
i, the set Mi,n consisting of n maximal interventions in edge i which
maximizes the objective function. To put it in a nutshell, Mi,n is the optimal
solution if we only consider edge i and exactly n interventions are to be
scheduled. This is the part of the heuristic requiring the most computational
power, because at each edge i the set Mi,n0 may not be the set Mi,n0

plus some other intervention, but a completely different set, so for each
n ∈ 1, . . . , nmi all possible combinations have to be explored. However,
the fact that interventions are not allowed to have common sectors (that
would mean performing an intervention twice in the same sector) keeps the
number of combinations within an acceptable bound, even for edges with
300 sectors, as shown in the case study in 4.

3. The third step is to find the set of sets of maximal interventions L = Mi1,n1 ,
Mi2,n2 , . . . , Mim,nm contained in the sets Mi,n found in step 2, that
maximizes the objective function, under the constrains that each set belongs
to a different edge, i.e. ij �= il ∀j, l ∈ 1, . . . , m, and the total number of
interventions is equal to the number of interventions to be scheduled N , i.e.
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∑m
k nk = N . This step is quite straightforward, because in this case it

holds that the solution for n days is contained in the solution for n + 1 days.
The set L is the set of disjointed (i.e. with no common sectors) feasible
interventions which maximizes the objective function. The only additional
requisites it has to fulfil to be a feasible solution is that the start depot of the
first intervention and the end depot of the last intervention coincide with the
specified ones (see 3.1), and that the end depot of each day equals the start
depot of the next day, i.e. Di(j) = Di(j + 1) ∀j ∈ 1, . . . , N − 1.

4. Let us define bridge interventions as interventions for which the start depot
is not equal to the end depot, i.e. Di �= De. Because of the procedure used to
calculate it, the solution L does not include any bridge interventions. Then
the conversion would consist in finding a set of bridge interventions such
that the start depot of the first intervention and the end depot of the last
intervention are as specified, and that all depots included in solution L are
visited at least once. This is nothing but the well-known travelling salesman
problem. But a necessary condition to solve this problem it to know the
cost of going from one node to another. To calculate this cost in this case
is very difficult, because the number of possible combinations is enormous,
so we choose to perform a local search. To assess the cost of introducing
a bridge intervention from edge j to edge k, we do the following: for each
Mi,n ∈ L, consider the n different sets which result of subtracting one
single intervention to Mi,n. Then add the best possible bridge intervention
from j to k to each of them. This will result in n different sets, each of
them containing a bridge intervention from j to k. After doing this for all
edges, the best solution, i.e. the one that maximizes the objective function, is
chosen and the cost of going from depot j to depot k is the decrement of the
objective function generated by the introduction of the bridge intervention.
Being the described process merely a local search, we can not guarantee that
the costs calculated are the minimum possible, but in practice this drawback
is minimal, as illustrated in 4.

5. The fifth and last step of the heuristic is to convert the solution L into a
feasible solution by solving the travelling salesman problem posed in step
4. This is done by means of the bench and bound method. This method has
the advantage of finding the optimal solution without necessarily exploring
the whole search tree. However, as the costs calculation described in step 4
may not be optimal, the solution achieved may as well not be optimal. But
we can easily calculate how much better the solution could potentially be,
because the objective function value of the solution L is an upper bound
for all feasible solutions.

4 Case study

In this section we present an example of how the proposed scheduling method can
be applied in reality. The problem characteristics are next described. Furthermore,
the network is depicted by figure 3.
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60 Km

120 Km

Figure 3: Railway network used for the case study.

• The modelled railways network consists of 120 km double way track, i.e. a
total of 240 km track, with 3 double switches which divide the network into
8 tracks of about 30 km each.

• The network has 2 depots (secondary tracks where tamping machines are
stationed during the day), being the distance between each other 60 km.

• Depot 2 must be the initial depot of the first intervention as well as the end
depot of the last intervention.

• One tamping machine with a travelling speed of 80 km/h and a tamping
speed of 1.4 km/h will be available for 20 nights.

• We have a database with track geometry data from the last 15 years for each
track sector of 200 m, so we consider a total of 1200 sectors.

According to the problem definition in 3.1, the solution space can be calculated
as

SolSpace = (NDepots · NSectors)NNights

= (2 · 240 · 5) ≈ 10 (5)

This should clarify that exploring the whole solution space is simply out of the
question.

The first step of the scheduling method is to define the objective function
which best expresses the railway company interests. Therefore let S be a set of
N scheduled interventions, and TS = {TS , TS , . . . , TSmax} the set of sectors
included in S, i.e. the sectors for which a tamping intervention is scheduled. Also
let f be the objective function. Then the objective function evaluated for S, f(S)
is defined as

f(S) =
TSmax∑

TS1

N̂L(t + h) (6)

where N̂L(t + h) is the expected NL at next campaign as defined in 3.2. In our
case study, tamping campaigns take place once a year, so h = 1 year.
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Figure 4: Expected one-year-ahead NL for one railway track.

Table 1: Obtained interventions schedule for the whole network.

Interv. Id Track Id Di De Si Se Length Value
1 1 1 1 1 25 25 7.8
2 1 1 1 29 54 26 8.56
3 2 1 1 196 223 28 7.79
4 2 1 1 236 262 27 9.39
5 5 1 1 626 654 29 8.14
6 5 1 1 664 690 27 7.72
7 5 1 1 700 725 26 6.54
8 6 1 1 864 892 29 8.26
9 3 1 2 339 363 25 8.47

10 3 2 2 366 392 27 8.49
11 3 2 2 394 421 28 11.8
12 3 2 2 422 450 29 13.43
13 4 2 2 451 480 30 7.93
14 4 2 2 493 520 28 9.99
15 4 2 2 531 557 27 10.46
16 7 2 2 919 949 29 8.99
17 8 2 2 1093 1118 26 7.01
18 8 2 2 1123 1149 27 8.66
19 8 2 2 1160 1188 29 9.77
20 3 2 1 313 337 25 10.72

Total value 179.92
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The estimation N̂L(t + h) is calculated by applying the forecasting method of
section 2 to the database. Figure 4 shows the interpolated values of the estimation
N̂L(t +h) for the 150 sectors of one track. The curve is so irregular that significant
differences can be appreciated even between contiguous sectors.

The interventions schedule obtained can be found in table 1. Di and De are the
start and end depots, respectively, and Si and Se are the initial and end intervention
sectors, respectively. The length is expressed in sectors (each sector is 200 m long),
and the value is calculated according to equation 6. In bold are the two bridge
interventions, namely interventions 9 and 20. The reason why some interventions
are longer than others (lengths vary between 25 and 30 sectors) is that some sectors
are nearer to the depots than others, so the travelling times are shorter and then
longer time is available for the tamping interventions themselves.

The best solution found has a value of 179.92, while the upper bound for
the solution value was 180.18. This means that in the worst case our solution has
0.14% lesser value than the optimal solution. The heuristic has been implemented
in C++ language, under the GNU/Linux operative system. The calculation time
is under 1 second using a desktop PC with Pentium IV processor and 1 GB RAM
memory.

5 Conclusions

In this work a heuristic based method for railway track tamping interventions
scheduling has been presented. To our best knowledge, it is an innovative approach
which goes beyond the state of the art both by incrementing the precision of
the obtained interventions schedule and reducing dramatically the calculation
time. This makes it possible to fine tune the maintenance strategy by evaluating
the benefits or drawbacks of potential modifications in the maintenance process.
Furthermore, the presented method could also be used to optimize the tamping
in such a way that NL values are nowhere higher than a given NLmax. In
fact this could be achieved by setting a non-continuous objective function, with
a step at NL = NLmax. Future work includes the development of a Monte
Carlo simulation environment for the railway ageing and restoration process, for
integrated optimization of planning and scheduling of railway track maintenance
processes.
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