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Abstract

This paper addresses the problem of generating a cost-optimal railway infrastruc-
ture by stating and solving a linear optimization problem. Railway infrastructure
is represented by a network consisting of nodes and arcs. The nodes represent
stations; the arcs lines connecting the stations. An input instance of the network
design problem for railway infrastructure consists of two parts. The stations, which
have to be connected in a certain way, and a traffic demand, which relates each pair
of nodes (A, B) to a number of trains of different types, has to be routed from A
to B in a given time horizon. A newly designed network answers two questions:
what is the topology of the network, i.e. which stations are connected to each
other and how does the line look like in each connection (e.g. single track, double
track, single track with one overtaking station etc.)? The observed kind of routing
problem can be stated and solved as a multi-commodity flow problem. In order to
get the design of the network using a routing routine, a complete network is con-
structed. Finding a routing in such a complete network is then equal to designing
the network, since the routing chooses the arcs needed and so designs the desired
network. To solve the problem efficiently it is stated as a mixed integer program
(MIP), which is solvable by standard MIP-solvers.
Keywords: railway infrastructure, strategic long-term planning, network design,
multi-commodity flow, MIP.

1 Motivation

A solution of the problem of synthesizing railway infrastructure (SRI) answers the
question: what does a cost-optimal network of railway infrastructure for a given
traffic requirement look like? Planning a complete new network of infrastructure
from scratch is one obvious reason why research in this field pays off. Another one
is the strategic long-term planning of infrastructure done by railway infrastructure
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managers. During this planning process, estimated future traffic flows are routed
on an existing railway infrastructure to identify bottlenecks or capacity surpluses.
After that the infrastructure has to be redesigned to meet the future requirements.
As stated by Ross [1], currently long-term infrastructure planning is mainly a cre-
ative process. The results of this paper create a basis for methods that can provide
provable optimal decisions for such planning processes.

The following section, which is the main section of the paper, describes what has
to be done to state the SRI problem as a MIP. The third section, which is followed
by some conclusions, discusses MIP solving in general and the first results of the
solving process.

2 Model

The network of railway infrastructure that has to be designed is very intuitively
represented by a graph G = (V, A), with nodes N representing the stations and
arcs A representing the lines connecting the stations. Before the model of the prob-
lem is presented in detail, let us first have a look at the demands that the input and
output of the problem are placing on the structure of the model. An input instance
of the SRI problem contains the following information:

• a set of railway stations defined by their distances to each other,
• a set of train types, which are distinguished by parameters such as maximum

speed, length, acceleration and deceleration rates,
• a traffic demand consisting of pairs of stations and an associated number of

trains – of possibly different types – which should run between these two
stations,

• a quality parameter, which limits the degree of utilization for each station-
to-station connection,

• a set of stages of extension of lines, which are constructible between two
stations, defined by their life cycle cost and capacity, and

• a time horizon.

The questions a solution for this problem has to answer are

• Which stations have to be connected directly to each other?
• What does the connection of two stations look like (e.g. single track, double

track, single track with one overtaking station etc.)?
• What does the routing of traffic demand look like, i.e. which route is used

by which train to reach its destination station?

It is important to distinguish the two parts of the problems’ structure that are
mentioned above. On the one hand there is the network design problem, which
determines the topology of the network, and on the other hand there is the routing
problem of the traffic flow. Let us first consider how the routing problem for traffic
flow can be modeled and after that how the network design problem can be solved.
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2.1 The routing problem

It is easy to see that finding the best route for a given demand of traffic flow is
equal to searching for the minimum cost flow in a network.

2.1.1 The minimum cost flow problem
In the minimum cost flow problem the objective is to find the (s, t)-path with the
least cost shipment for a given flow demand, where s and t are the source of the
respective target nodes. Ahuja et al. [2] define the minimum cost flow problem as
follows:

Minimize
∑

(i,j)∈A

cijxij (1)

subject to
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀i ∈ N, (2)

lij � xij � uij ∀(i, j) ∈ A, (3)
n∑

i= 1

b(i) = 0, (4)

where N is the set of nodes, A the set of arcs, xij the flow, cij the cost per unit
flow and lij , uij the capacity bounds on an arc (i, j) ∈ A. The b(i) in eqn (2) is
defined in the following way:

b(i) ∈ �

⎧⎪⎨
⎪⎩

< 0, node i is demand node with demand −b(i),
= 0, node i is transshipment node,

> 0, node i is supply node with demand b(i).

The SRI deals with multiple commodities of traffic flow. Each commodity is
defined by a start and destination station, as well as by an amount of trains. This
leads to a special kind of network flow: the multi-commodity flow.

2.1.2 The multi-commodity flow problem
Ahuja et al. [2] state the multi-commodity flow problem as an optimization prob-
lem of the form:

Minimize
∑

1�k�K

ckxk (5)

subject to
∑

1�k�K

xk
ij � uij ∀(i, j) ∈ A, (6)

Nxk = bk k = 1, 2, ..., K, (7)

0 � xk
ij � uk

ij ∀(i, j) ∈ A and k = 1, 2, ..., K, (8)
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where G = (V, A) is the network graph, K is the number of commodities, xk
ij the

flow of commodity k ∈ K on arc (i, j), xk denotes the flow vector of commodity
k ∈ K , ck the corresponding cost per unit flow vector and N the node-arc inci-
dence matrix, which is used in eqn (7) analogous to eqn (2) to define whether a
node is a demand, supply or transshipment node. Eqn (6) restricts the sum of all
flows on each arc (i, j) by the upper bound uij . The values of uk

ij also enable the
possibility to bound the flow of each commodity on each arc separately.

2.2 The network design problem

The key idea to solve the network design part of the SRI is to use the solution
of the embedded routing problem. To do so a multi-commodity flow problem is
solved, getting as input a complete network with multiple arcs. As mentioned in
the beginning of section 2, the solution of the embedded network design problem
of the SRI answers not only the question of which stations have to be connected
to each other, but also what a connection looks like. Thereby, different stages of
extension for one line, such as single track, double track, single track with one
overtaking station and so on are distinguished (see Figure 1).

2.2.1 The multi-arc network
The multi-arc network used for the SRI contains one arc for each stage of exten-
sion, which is constructible between two stations. Each of these arcs possesses a
different capacity and cost depending on the lines’ design and the corresponding
life cycle cost. Before the arc capacity is defined in the next subsection, an example
is given that shows the working method of solving the network design problem by
solving the multi-commodity flow problem on a complete graph with multi-arcs.

2.2.2 Example
Given the graph G = (V ,A), see Figure 2(a), with the set of nodesV = {A, B, C, D}
and the set of arcs A = {AB0, AB1, AB2, BC1, ...}, where each arc XYi of a
connection XY has got a different capacity and different cost. Also given three
traffic flows C0, C1 and C2 (commodities) with a start and a destination sta-
tion and an amount of trains (demand). Different train types are indicated by
an index. C0 = ((A, D), [50, 01, 02]), C1 = ((B, C), [00, 151, 22]) and C2 =
((C, D), [00, 01, 32]). A routing found by solving a multi-commodity flow prob-
lem could, for example, route the flows 50, 50 + 151 + 22 and 50 + 32 via arcs

Figure 1: Different stages of extension for one line.
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Figure 2: Network design by multi-commodity routing for commodities C0 =
((A, D), [50, 01, 02]), C1 = ((B, C), [00, 151, 22]) and C2 = ((C, D),
[00, 01, 32]).

AB0, BC2 and CD1, shown in Figure 2(b). The resulting stages of extension of
the lines between the stations are displayed in Figure 2(c).

To calculate the capacity consumption of mixed flows, such as 50+32, one has to
keep in mind that different train types have different characteristics, such as maxi-
mum speed, acceleration and deceleration rates, and because of this they consume
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different amounts of capacity. In terms of flow units this has the impact that, for
example, the following holds: 5i �= 5j . Furthermore, different mix ratios of trains
consume different amounts of capacity and there is no train type whose capacity
consumption is expressible by a linear combination of the other train types con-
sumptions. This specific characteristic of the capacity consumption is examined in
the next section.

2.3 Arc capacity

Capacity consumption of one train on a track section can be expressed using the
well-known minimum headway time, introduced by Happel [3]. It is the time zij a
train j at least has to wait when it wants to enter a track section that is currently
occupied by another train i. A visualization of the minimum headway time using
blocking time stairways is shown in Figure 3. For more information on the blocking
time theory, see Pachl [4].

Wendler [5] calls this minimum headway time in the context of queuing the-
ory service time because it is the time frame while one train occupies the service
channel – i.e. the track section – and a following train cannot be served.

To calculate the mean minimum headway time of a mix of trains on a track
section, the order of trains arriving at the track section is important, since the min-
imum headway time can only be derived for pairs of consecutive trains. Because
SRI deals with future traffic demands there is no fixed timetable for the trains

t

d

Zij

train i

train j

Figure 3: Minimum headway time zij .
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occupying the infrastructure. Because of that, all possible successions ij of trains
i and j are considered and weighted with probabilities pij of the event that train j
follows train i. This is shown in eqn (9), where xi is the number of trains of type
i, xj is the number of trains of type j, and N is the number of all trains. This is
a very simple estimation, which will be refined in future SRI solver implementa-
tions. The mean minimum headway time z̄ij and the expected service time ETB

over all trains in the time horizon, respectively, can be derived by summing up
products pij · xij (eqn (10)). Eqn (11) shows the expected capacity consumption
on a given track section a and mix of trains of different train types |K|.

pij :=
xi

N
· xj

N
=

xi · xj

N2
, (9)

z̄ij = ETB =
∑

i

∑
j

pij · zij , (10)

Na · ET a
B = Na ·

∑
i∈K

∑
j∈K

xa
i · xa

j

Na2
· za

ij (11)

By means of the preceding definitions it is now possible to state the SRI problem
as an optimization problem.

2.4 SRI: multi-commodity flow with multi-arcs

For a network G = (N, A), a set of commodities C and set of flow types (train
types) FT the optimization model of the SRI is formulated as follows:

Minimize
∑
a∈A

ca · xa
used (12)

subject to

Na ·
∑
i∈K

∑
j∈K

xa
i · xa

j

Na2
· za

ij � 0.6 · tU ∀a ∈ A, (13)

∑
a∈Out(n)

xa
ij −

∑
a∈In(n)

xa
ij = bn

ij ∀n ∈ N, ∀i ∈ FT, ∀j ∈ C (14)

xa
ij � 0 ∀a ∈ A, ∀i ∈ FT, ∀j ∈ C (15)

xa
used =

{
1, if ∃i : xi

a > 0,

0, else.
(16)

where xa
i is the sum of all flows on arc a of the flow type for train type i, and xa

ij

is the flow of type i of commodity j on arc a. For a node n, the functions In and
Out return the set of all arcs (n′, n) ∈ A and (n′, n) ∈ A, respectively.
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Because one unit of flow corresponds to one train, it seems to be incorrect to
not restrict the variable domain to positive integers. However, since the used traffic
demands are derived from future traffic flow estimations it is sufficient to choose
positive reals as the domain, as stated in eqn (15). This relaxation furthermore
simplifies the solving process. The objective is to minimize the life cycle cost for
the arcs that are used to route flow. The variables xa

used, defined in eqn (16), are
used to ensure that arc costs arise if and only if there is flow on the arc. Usually,
cost functions in flow problems depend on the amount of flow, but since the track,
which corresponds to an arc, has to be constructed independently of the number of
trains running on it, the cost model described above is chosen. Eqn (14) contains
the known flow conservation constraint, cf. eqns (2) and (7). Eqn (13) is called
capacity constraint. The left-hand side describes the occupation time of the mix of
trains routed via track/arc a, cf. eqn (11). This capacity consumption is bounded
to an amount of 60% of the observed time frame tU . This value is taken out of
UIC Code 406 [6]. This is a leaflet of the International Union of Railways, which
standardizes railway capacity analysis. There exist of course more sophisticated
capacity models, but for the sake of simplicity the approach according to UIC
Code 406 is selected. Since the capacity constraint is non-linear, powerful LP/MIP-
solvers are not applicable. To overcome this difficulty the model is transformed
into a mixed integer program.

2.5 SRI: MIP model

A MIP is a linear optimization problem that contains variables with an integer
value domain. Because of this integrality a MIP is much more difficult to solve
than a LP. The MIP resulting from the following transformation of the optimization
problem given in eqns (12)–(16) is furthermore a binary MIP (BMIP), because the
integral variables are even binary variables.

To get rid of the non-linear capacity constraint, possible train/flow type mix
ratios that fully utilize the capacity of an arc are calculated for each arc, using
ETB , see eqn (11). These mix ratios are denoted as configurations. In the case of
three different train types 0, 1 and 2, the set of configurations for an exemplary arc
a has the following form:

Confa := {[760, 01, 02], [740, 11, 02], ..., [00, 641, 00], ..., [00, 01, 422]}. (17)

In the MIP model there is one binary variable ya
c for each configuration c ∈

Confa. This holds for every arc a ∈ A. For each arc a at most, one of these
variables can be selected by setting its value to 1. This enables the chosen configu-
ration and for each flow type i the sum of the flow of type i on that arc is bounded
by the value of the ith component of the selected configuration. This means that
one configuration [x0, x1, x2]a, if selected for an arc a, restricts the flow on a for
each flow type i to the value of xi. This is modeled by the new linear capacity
constraint in eqn (19) of the MIP model. The objective is to minimize the cost of
the selected arcs, which is equal to maximizing the cost of the arcs that are not
picked. Therefore, variables ya

off/on are introduced and set to 1 if the arc is not used.
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This restructuring of the objective function provides a faster solving process. The
constraint shown in eqn (21) ensures that an arc is either switched off or exactly
one configuration is enabled.

Maximize
∑
a∈A

ca · ya
off/on (18)

subject to

∑
j∈C

xa
ij �

∑
c∈Confa

ya
c · vc(i) ∀a ∈ A, ∀i ∈ FT, (19)

∑
a∈Out(n)

xa
ij −

∑
a∈In(n)

xa
ij = bn

ij ∀n ∈ N, ∀i ∈ FT, ∀j ∈ C (20)

∑
c∈Confa

ya
c + ya

off/on = 1 ∀a ∈ A (21)

xa
ij � 0 ∀a ∈ A, ∀i ∈ FT, ∀j ∈ C (22)

ya
c ∈ {0, 1} ∀a ∈ A, ∀c ∈ Confa (23)

ya
off/on ∈ {0, 1} ∀a ∈ A, (24)

where G = (N, A) is the network, Confa the set of all configurations associated
with arc a, C the set of commodities, FT the set of flow types and function vc

returns for a given i ∈ FT the value of the ith component of the configuration c.

3 Solving

The previous section presents a MIP model of the SRI problem. To solve the prob-
lem professional solver software, which provides academic user licenses, is used.
Two solvers with different advantages were used to solve the problem as follows.

3.0.1 Gurobi
The Gurobi Optimizer is a linear programming mixed integer programming solver
that exploits modern multi-core processors. Gurobi is currently the performance
benchmark winner, so it provides the fastest solving times. The disadvantage of
Gurobi is the interface. It allows only the usage of restricted sets of functions,
parameters and attributes, which can be accessed via the programming languages
C, C++, Java, .NET or Python. Despite this restriction it is a powerful solver that
additionally supports some modeling systems, such as MPL and AMPL, and is
able to read and write LP and MPS files. For further information see the Gurobi
homepage [7].

3.0.2 SCIP
SCIP stands for Solving Constraint Integer Programs and was developed at the
Konrad-Zuse-Zentrum for information technology in Berlin. Since the complete
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source code is available the solver allows total control of the solution process and
unrestricted access to any information at any stage of the solution process. The
user can define, write and include their own pricers, branching rules, presolvers,
heuristics and so on. Basic principles and further information about the concept of
constraint integer programming and SCIP are provided by Achterberg [8] and the
SCIP homepage [9].

3.1 Solving mixed integer problems

There is a wide range of methods that are useful for solving (mixed) integer pro-
grams efficiently. The kernel method, which is state of the art and the cause of that
focussed here, is called branch-and-bound.

3.1.1 Branch-and-bound
The goal of the branch-and-bound method is to find an assignment of values of the
integer variables that forms an optimal solution of the MIP. One way to achieve
this is to enumerate all possible assignments of values by a so called explicit enu-
meration tree. This results, even in the binary case for a small set variables, in
a huge number of tree nodes. So it is desirable not to explore the whole tree. To
achieve a so called implicit enumeration tree, bounds are calculated at each node of
the branch-and-bound tree during tree building. With the help of these bounds it is
possible to prune branches of the tree, so that they need not be explored. The most
common method for finding bounds is to solve the linear programming relaxation
of the given MIP. In the case of a maximization problem the optimal solution of the
relaxation provides an upper bound on every solution of the MIP and is the basis
for the branching decision in the current node. Branching in the binary case means
creating two new branches of the branch-and-bound tree by assigning the values
0 and 1 to the variable that is chosen to branch on. For more detailed information
about branch-and-bound, see Wolsey [10].

3.2 Results

Current implementations run on examples with 20 stations, 3 different train types,
4 different track types and 10 traffic flows. Gurobi returns a result within a 1%
optimality gap in less than 7 minutes. The optimality gap is calculated using the
best upper in best lower bound in the current stage of the solving process. Prov-
ing the optimality, i.e. reaching a gap of 0%, currently takes a great deal of time.
This is caused by the huge amount of binary variables. The described example
contains about 2 · 106 binary variables and 4.5 · 104 continuous variables. To over-
come this explosion in the number of binary variables ongoing implementations
are focussed on approaches such as column generation, described by Desrosiers
and Lübbecke [11], which try to minimize the number of binary variables needed
to calculate the optimal solution.
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4 Conclusions

This paper shows how to synthesize networks of railway infrastructure out of esti-
mated future traffic flows. To do so the problem is modeled as an optimization
problem by interpreting it as a multi-commodity flow problem on a complete graph
with multi-arcs, so that a found routing determines the arcs needed. To make the
optimization model applicable to professional solver software the problem is trans-
formed to a MIP and respectively BMIP. This transformation results in a large
number of binary variables, which again results in long solver running times. To
overcome this difficulty ongoing research focusses on approaches, such as col-
umn generation, which try to minimize the number of binary variables needed to
calculate the optimal solution.
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