
Formalizing train control language:
automating analysis of train stations

A. Svendsen1,2, B. Møller-Pedersen2, Ø. Haugen1,
J. Endresen3 & E. Carlson3
1SINTEF, Norway
2University of Oslo, Norway
3ABB, Norway

Abstract

The Train Control Language (TCL) is a domain-specific language that allows
automation of the production of interlocking source code. From a graphical
editor a model of a train station is created. This model can then be transformed to
other representations, e.g. an interlocking table and functional blocks, keeping
the representations internally consistent. Formal methods are mathematical
techniques for precisely expressing a system, contributing to the reliability and
robustness of the system through analysis. Traditionally, applying formal
methods involves a high cost. This paper presents a formalization of TCL,
including its behavior expressed in the constraint solving language Alloy. We
show how analysis of station models can be performed automatically. Analysis,
such as simulation of a station, searching for dangerous train movements and
deadlocks, is used to illustrate the approach.
Keywords: interlocking, domain specific language (DSL), model analysis, alloy,
Train Control Language (TCL).

1 Introduction

An interlocking system prevents dangerous train movement on a train station by
giving a “clear” signal to a train only if the requested route is safe. The
interlocking system ensures that the route is safe by reading the status of the
elements in the route (e.g. tracks, switches, signals) to see if they comply with
the logic of the interlocking system. This logic is depicted by an interlocking
table, and realized by the interlocking source code, in the form of functional

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 245

doi:10.2495/CR100241

blocks of code that are executed (interpreted) by the PLCs (Programmable Logic
Controllers) in their control of the station.
 Since the interlocking system is a safety system of the highest classification,
several rounds of formal review and testing are needed. The functional
specification is formally reviewed, before the functional blocks are produced and
also formally reviewed in several steps. In addition, systematic testing of the
station products is performed to ensure that they are correct. Both the review and
testing processes are time-consuming and have a high cost.
 The Train Control Language (TCL) [1, 2] is a domain-specific language
(DSL) for modeling train stations. TCL automates the production of functional
specification and interlocking source code. From a graphical editor, where train
stations can be modeled, model transformations generate other representations of
the stations, e.g. interlocking tables, functional specifications and functional
blocks of interlocking source code.
 In this paper we present an extension to our original TCL to automate
analysis of train station models. The contribution is the formalization of the TCL
language and models, and the analysis performed on these models. Even though
the current review and testing processes cannot be eliminated, allowing for
automatic analysis on model level may allow reduction of costs in these
activities.
 The outline of the paper is as follows: Section 2 describes the background for
this work, the current development techniques, including the review and testing
activities. Section 3 introduces TCL and how it automates the production of
interlocking source code. Section 4 briefly introduces the constraint-solving
language Alloy that will be used for formalizing TCL in Section 5. Section 6
illustrates how the formal Alloy models can be used for automatic analysis of the
TCL models. Finally, Section 7 concludes the paper and look at some topics for
future work.

2 Background

From an input requirement specification, consisting of an interlocking table, a
structured drawing of the station and a generic Computer Based Interlocking
(CBI), incorporating national rules, a functional specification is produced. The
functional specification is a mapping of the interlocking table into a set of logical
equations. The functional specification is further developed into a design
specification, which is close to the interlocking source code. The functional
specification and design specification are formally reviewed following the Fagan
inspection method [3]. This method includes a set of rules, guidelines and
checklists for use in ABB RailLock. Both the production and review of the
functional specification and design specification are performed manually, and are
thus of high cost.
 Following the functional specification and the design specification two teams
develop the interlocking source code using different libraries and developing
methods. This reduces the chance for common code errors. A formal review of
the produced interlocking source code, checking it against the functional

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

246 Computers in Railways XII

specification and design specification, is then performed using the Fagan
inspection method once more. An independent party then validates the source
code against all safety requirements using a formal mathematical method that is
accepted as adequate by the Norwegian Railway Authority.
 Following the review of the interlocking source code, the source code is
deployed and several steps of systematic testing are performed. This includes
testing the response of the elements in the station, to ensure that they give the
correct responses, and simulating train movement systematically, to verify that
the system behaves as expected. The behavior of the interlocking system is
described by the dynamic semantics of this system, and we model a set of
dynamic semantic rules for the interlocking system in Section 5.

3 Train control language

Since the development of interlocking source code is a time-consuming process
requiring a large amount of resources, the Train Control Language has been
developed to automate this task. This was shown by [1, 2], and in this section we
show a summary of this work.
 TCL is a domain-specific language for modeling stations in the train domain.
TCL is defined by a metamodel (see Figure 1), which defines the concepts in the
language and how they are connected.
 The topmost concept is Station, which represents the station, containing the
other concepts. A TrainRoute is the route a train must acquire to be allowed to
move into or out of the station. A TrainRoute consists of several TrackCircuits,
which are a collection of Tracks, where a train can be detected. A Track can

Figure 1: TCL metamodel excerpt.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 247

either be a LineSegment or a Switch, and these are connected by Endpoints. An
Endpoint can either divide TrackCircuits (TCEndpoint) or be within a
TrackCircuit to connect LineSegments and Switches (MiddleEndpoint). A
TrainRoute starts at a TCEndpoint with a connected Signal and ends at another
TCEndpoint with a connected Signal in the same direction.
 Based on the metamodel, Eclipse Modeling Framework (EMF) [4] and
Graphical Modeling Framework (GMF) [5] have been used to develop editors, in
particular a graphical editor for modeling the structure of a train station (see
Figure 2). The figure also illustrates the concrete syntax of TCL by showing a
station with two tracks. A station is created by choosing an element on the
toolbar (to the right), dragging it into the canvas (middle) and connecting it to the
other elements. Attributes for the elements are then set according to its property
(property view at the bottom). When the station model is complete according to
the input specification, other representations can be generated automatically by
pressing a button (on top).
 TCL includes three kinds of model transformations, generating one of the
three following representations: Interlocking table, functional specification and
interlocking source code (functional blocks). The interlocking table is used to
compare with the provided interlocking table to visually verify the correctness of
the station in an early phase. The functional specification is also used for

Figure 2: TCL graphical editor.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

248 Computers in Railways XII

verification purposes. The interlocking source code has to be formally verified
and tested before it can be used for controlling the station.
 Notice that for TCL to be put into full production, a formal verification of the
language and code generators is needed, to formally confirm that it complies
with the same safety standards as the current development process.
 We will, however, see how analysis can be performed on the TCL models
automatically by translating the models into models of the constrain-solving
language Alloy. Since the train domain has to follow high safety standards, this
will not eliminate the time-consuming process of reviewing and testing the
station products. However, by performing analysis on model level early in the
development phase, both design and implementation errors can be discovered
early and thus reducing cost.

4 Alloy

Formal verification and validation involves expressing a system (e.g. a train
station) precisely through mathematical terms and proving the correctness of the
system. Formal methods have traditionally provided accurate analysis of systems
at a high cost. Extensive knowledge of mathematical techniques, with their
complex notations and theorem proving raises the threshold for performing
analysis.
 Alloy is a lightweight declarative constraint-solving language for relational
calculus [6]. Through the Alloy Analyzer automatic and incremental analysis can
be performed without the need for proving theorems or handling complex
mathematical notation. Unlike traditional theorem proving, the Alloy Analyzer
only offers analysis within a given scope, which is the number of instantiated
elements of each type. The small scope hypothesis ensures that such analysis is
sufficient, since if a solution exists, it will be within a scope of small size [7].
 An Alloy model typically consists of signatures (types), fields (references to
signatures), facts (global constraints), predicates (parameterized constraints) and
assertions (claims). A type hierarchy is modeled by letting a signature extend
another signature. A fact consists of constraints that must always hold. A
predicate consists of constraints that must hold if the predicate is processed, and
can therefore be used to represent operations. An assertion consists of
constraints that is claimed to hold. As an example, Figure 3 shows a signature of
a train route corresponding to train route in the TCL metamodel (Figure 1).

Figure 3: Signature of a train route in Alloy.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 249

 In the search for a solution, the Alloy Analyzer populates the signatures with
elements up to the given scope where all the facts are satisfied. Two kinds of
analysis can be performed: Finding a model instance satisfying a predicate or
finding a model, which represents a counterexample to an assertion. If an
analysis does not find a solution or counterexample, there may not be any
solution or counterexample within the selected scope, or the constraints
(facts/predicates) may over-constrain the model. Thus, the constraints can be
adjusted and the Alloy model can be built stepwise based on the feedback from
the Alloy Analyzer.
 The Alloy Analyzer requires the maximum number of each type of element
(scope) to be specified, and it guarantees that if a solution or counterexample
exists within the scope, the analysis will find it. This process does not require
any test cases, since it checks a property for all possible solutions within the
scope. The space of cases examined by the analysis is usually huge (billions of
cases) [6].

5 Formalizing TCL

For the formalization of TCL we follow the approach by Kelsen and Ma [8].
They illustrate how to use Alloy to formalize modeling languages and compare it
to traditional formalization techniques. As they point out, the Alloy approach
offers a uniform notation and automatic analyzability using the Alloy Analyzer.
 We choose to formalize TCL in Alloy by three separate models; a static
model, a dynamic model and an instance model (see Figure 4). Semantic rules on
language level can then be separated from the rules on instance level, such that
several instances can use the same static rules. Besides that, we get a clear
separation between static and dynamic semantics, making them easier to
maintain.
 The static model holds the static semantics for the TCL language, including
the concepts and how they relate (from the metamodel) in addition to language
constraints. Figure 3 shows how the concept train route is modeled in Alloy by
using a signature. This signature relate to other signatures through its fields (e.g.
to track circuit and endpoints). Additional constraints restrict the number of valid
TCL models instantiated by the Alloy Analyzer.

Figure 4: Alloy specification divided into three models.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

250 Computers in Railways XII

 The Alloy Analyzer populates the signatures with elements when it searches
for solutions or counterexamples. Thus an arbitrarily TCL model is instantiated
when using the static model. However, since we want to analyze a particular
TCL model created by the TCL editor, the number of valid model instances in
Alloy must be further constrained to be only this one. We therefore import and
extend the static semantics of the static model using an instance model, which
specifies one particular station. The instance model therefore specifies the
number of model elements in the TCL model and how they are connected (e.g.
the exact number of train routes and how they are connected to other elements).
The result of these constraints is that Alloy only instantiates one valid model for
the analysis, which is the TCL model subject to analysis.
 To be able to perform proper analysis on a TCL model, the behavior of the
station needs to be formally specified as well. This specification is modeled in
the dynamic model using a state machine. The dynamic model constrains the
behavior of the concepts of the static model, and the Alloy Analyzer satisfies
these constraints when it uses the instance model to instantiate an instance.
Therefore, the dynamic model imports the instance model and uses the concepts
of the static model.
 The dynamic semantics of TCL involves train movement. Intuitively, trains
can move simultaneously on a station as long as they follow the basic rules of the
interlocking table (table defining safe train movement). More specifically, a train
has to request a train route before it can move into or out of the station. Given
that no other conflicting routes are already taken and all track circuits in the route
are free, the route can be given to the train. The allocation of the train route
involves setting switches to the right position and signals to the correct status
before the train gets a “clear” signal. The train moves from track circuit to track
circuit within the route until it reaches its destination. The track circuits are
occupied and freed during the movement.
 The state machine defined in Alloy, to describe the behavior of a station,
contains a set of states and trains in addition to the instance of the TCL model.
The states define the conditions of the station (e.g. position of trains) and the
transitions between them define the operation to be performed. There are three
operations (represented as predicates): Insert a new train on either side of the
station, allocate a route to a train, and moving a train. Through these three
operations we can simulate the train movement on the TCL model modeled by
the TCL editor.
 The development of the Alloy models is illustrated in Figure 5. The static and
dynamic models are defining the TCL language and are thus only produced once.
The static model is generated from the TCL metamodel, while the dynamic
model is produced manually. The instance model is different for each TCL
model, and is therefore generated once for each TCL model. However, the
instance model is generated automatically from the TCL model modeled in the
TCL editor using a MOFScript transformation [9].
 As a comparison, Jackson presents an Alloy case study on railway safety [10].
In this example constraints are specified such that only safe train movement is
allowed. This is very similar to our Alloy approach. However, our approach

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 251

performs analysis on real train stations, which are typically more complex than
the example presented in [10].

6 Performing analysis of TCL models

From the Alloy formalization of TCL we can perform analysis on the TCL
models. The Alloy Analyzer can, as mentioned in Section 4, perform two kinds
of analyses: searching for a solution that satisfies a predicate or searching for a
counterexample that falsifies an assertion. In our analysis we will use both of
these to prove certain properties.
 To perform analysis on a TCL model, the TCL model is exported and
transformed to an Alloy instance model (as described in Section 5) and the Alloy
Analyzer is invoked with this model as input. This process has been integrated
into the TCL editor giving a user-friendly interface for performing the analysis
on TCL models. Figure 6 illustrates the integration with the TCL editor, and how

Static Dynamic Instance

TCL to Alloy

MOFscript
transformation

MOFScript
transformation

Written by hand

Language level Model level

Transformed once
Transformed once

for each station
model

Figure 5: Development of the Alloy models.

Figure 6: Integration with the TCL editor.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

252 Computers in Railways XII

to perform the analysis. By right clicking on the station canvas, the illustrated
menu is given where one of the menu items can be selected. Only a few options
for analysis are included in this interface for now. However, we plan to add more
options in the future, including a possibility to specify arbitrarily predicates and
assertions.
 Our analysis is mainly concerned with the behavior of the station (dynamic
semantics) in some particular situations. The Alloy Analyzer gives a solution or
counterexample by giving a trace through the state machine specified by the
dynamic semantics. By following this trace, we can observe how the condition of
the station changes, and thus see the train movement through the station.
Constraints for the conditions in the first and last state in the trace can be
specified (e.g. both the first and last state includes no trains in the station).
 Intuitively, we specify the conditions for the first state and for the last state in
the trace and how many trains are moving through the station. These parameters,
in addition to whether we run a predicate or check an assertion, decide what kind
of analysis we are performing.
 As an example, imagine that we have a start condition with a train on track 1
(see Figure 7). Typical test-cases will be to test whether any train routes
involving track 1 (train route 1 and 2 in Figure 7) can be given to other trains
while the train is located on track 1. This property can be checked through
specifying an assertion in Alloy (see Figure 8). This assertion claims that no
model can be instantiated where the following constraints are true: The first state
in the trace includes a train on track 1, the last state in the trace still constrains
the train to be on track 1, and the last state in the trace also includes an allocated
route (to another train) involving track 1. The Alloy Analyzer is invoked to find
a possible trace through the state machine where such behavior is allowed (a
counterexample). Fortunately, for our two-track station, Alloy does not find any
counterexample that falsifies our assertion, proving that no train routes involving
track 1 can be allocated when a train is located there.
 Other analyses include the search for the number of active trains the station
can include simultaneously without leading to a deadlock. A predicate can be
used to search for a solution for a certain number of simultaneous trains. If no
solution is found, the specified number of simultaneous trains will lead to a
deadlock. For our two-track station, the maximum number of simultaneous trains
turns out to be three (solution illustrated in Figure 9). This figure illustrates the

Figure 7: Two-track station with a train on track 1.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 253

assert checkRouteAllocation {

//assert that no model with the following constraints exist
no t,t2:Train, tc:tc_01, tr:TrainRoute{

tc in tr.trackCircuits

//constraints for first state in trace
t->tc in first.trainOnTrack
tc in first.occupiedTrack
no first.trainOnRoute
no first.allocatedRoute

//constraints for last state in trace
t->tc in last.trainOnTrack
tc in last.occupiedTrack
t2->tc in last.trainOnTrack
t2->tr in last.trainOnRoute
tr in last.allocatedRoute

}
}

Figure 8: Assertion on train route allocation involving track circuit 01.

Figure 9: Maximum number of trains on the station simultaneously.

condition of the station in the state (in the trace) where it included three trains
simultaneously. Notice that this figure has been created based on the trace
information given by the Alloy Analyzer, and is not created by Alloy itself.
 Arbitrarily analysis can thus be performed automatically by specifying the
condition of the first and last states in the trace, the number of trains to be
involved and what kind of assertion/predicate to check/process. We have seen
two examples of analysis that can be performed on a TCL model. However, we
see that these two examples do not differ from other test cases on stations. Thus,
a big amount of the testing of stations can be similarly checked by analyzing the
TCL models, with considerable less amount of effort.

7 Conclusion and future work

This paper presented a formalization of TCL, both static and dynamic semantics,
in Alloy such that automatic analysis can be performed on TCL models. We
looked at how the process of performing this analysis has been simplified by

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

254 Computers in Railways XII

integration with the TCL editor. Furthermore, two examples of analysis were
presented to illustrate the approach.
 As pointed out, this approach may not replace the traditional validation,
verification and testing processes. However, it adds extra value by allowing
automatic analysis in the early development process, which can be performed
both in the designing phase and in the development phase. By simulating train
movement traces on different station architectures (models), errors can be
discovered and corrected early, making a considerable potential for reducing cost
and time-to-market.
 Furthermore, since this approach analyzes TCL models, it will shift the
necessity of validation and verification from the code level to the model
transformations. However, validation and verification of the model
transformations only needs to be performed once. This approach thus has a huge
potential of optimizing the development and testing of interlocking source code.
 As future work we plan to extend the analysis we perform on TCL models.
Since the analysis is performed automatically, we can easily extend it to include
other test cases and properties that were earlier checked manually. Furthermore,
we are currently working on verifying the interlocking source code generated by
the TCL code generators. With verified code generators, parts of the verification
and testing process can be performed automatically on model level.

Acknowledg ments

The work presented here has been developed within the MoSiS project ITEA 2 –
ip06035 part of the Eureka framework.

References

[1] Endresen, J., et al. Train control language - teaching computers
interlocking. in Computers in Railways XI (COMPRAIL 2008). 2008.
Toledo, Spain: WIT Press.

[2] Svendsen, A., et al. The Future of Train Signaling. in Model Driven
Engineering Languages and Systems (MoDELS 2008). 2008. Tolouse,
France: Springer.

[3] Fagan, M.E., Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 1976. 15(3): p. 182-211.

[4] EMF, Eclipse Modeling Framework (EMF): http://www.eclipse.org/
modeling/emf/.

[5] GMF, Eclipse Graphical Modeling Framework (GMF): http://www.eclipse.
org/modeling/gmf/.

[6] Jackson, D., Software Abstractions: Logic, Language, and Analysis. 2006:
The MIT Press.

[7] Andoni, A., et al., Evaluating the “Small Scope Hypothesis”. 2003, MIT
CSAIL.

[8] Kelsen, P. and Q. Ma, A Lightweight Approach for Defining the Formal
Semantics of a Modeling Language, in Proceedings of the 11th

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

Computers in Railways XII 255

e

international conference on Model Driven Engineering Languages and
Systems. 2008, Springer-Verlag: Toulouse, France.

[9] Oldevik, J., MOFScript Eclipse Plug-In: Metamodel-Based Code
Generation, in Eclipse Technology Workshop (EtX) at ECOOP 2006. 2006:
Nantes.

[10] Jackson, D., Micromodels of Software, in Models, Algebras and Logic of
Engineering Software, M. Broy and M. Pizka, Editors. 2003, IOS Press. p.
351-384.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

256 Computers in Railways XII

