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Abstract 

Tracking is an important problem in train operation control. A key requirement 
for this problem is an accurate knowledge of the train’s position, velocity, and 
running mode. In this paper a hybrid system model of the train’s movement is 
introduced, which, for the first time, gives a clear description of the uncertainties 
during the movement. Based on this hybrid model, a new hybrid estimation 
algorithm is proposed in order to achieve a more accurate estimation of the 
train’s states, thereby improving the tracking performance. In the algorithm, the 
state transition probability matrix is dependent on the operation mode. 
Simulation results illustrate the good performance of the new estimation 
algorithm with the hybrid system model.  
Keywords: hybrid system, automatic train operation, tracking, estimation. 

1 Introduction 

The automatic train operation system is one of the key sub-systems in trains. 
Accurate estimation of the train’s velocity and position is the basis for the safety 
of the automatic train operation. With that, the train tracking problem becomes 
more and more important for obtaining an accurate estimation of the train’s 
states. Hybrid estimation algorithms have been used in many target tracking 
applications, including air traffic surveillance [1, 2]. 
     In this paper, a hybrid system model is proposed for modelling the train’s 
dynamics. Four operation modes, power, speed holding, coast and braking, are 
modelled as the discrete states of the system, under which the train operates 
based on a continuous-time dynamic equation. Meanwhile, our model considers 
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the stochastic factors due to the uncertainties in the train movement. Few 
literatures consider these, yet they have a great effect on the tracking problems. 
     Based on the hybrid model of the train’s movement, a new hybrid estimation 
algorithm is proposed to track the train’s movement and estimate the train’s 
operation state. Interacting the Multiple Model (IMM) algorithm is a popular 
hybrid estimation algorithm based on multiple-model Kalman filters. It has been 
shown to give excellent performance with low computational cost in Blom and 
Bar-Shalom [5]. However, the IMM algorithm and other similar algorithms 
usually assume constant mode transition probabilities. The estimation algorithm 
presented in this paper has different mode transition probabilities corresponding 
to different modes, called the Mode-Dependent-Hybrid-Estimation (MDHE) 
algorithm. The simulation results show that the proposed algorithm achieves 
more accurate tracking and estimation performance compared with the IMM 
algorithm.  
     This paper is organized as follows: Sec. 2 introduces a stochastic linear 
hybrid system model of train dynamics. Sec. 3 proposes a corresponding hybrid 
estimation algorithm for the train tracking problem. In Sec. 4, the simulation 
illustrates the performance of the algorithm. Conclusions are presented in Sec. 5.   

2 Hybrid model of train movement 

A hybrid system is a system whose evolution is driven by both the continuous 
time and the discrete events. The dynamics of continuous components are 
described by the traditional differential/difference equations. Only when some 
conditions are satisfied, jumps of the system’s state are triggered by discrete 
events. In the train control system, the train’s states change continuously with 
time, such as velocity and position, which can be described by differential 
equations [3, 6]. However, they will run into different modes triggered by 
discrete events, such as the switches between traction and brake. In the train’s 
movement, there are four operation modes: power, speed-holding, coast and 
braking. Let {1, 2,3, 4}M   correspond to these four discrete modes. It is 

assumed that 0p   is the traction power applied at the wheels and P  is the 

maximum power, 0q   is the braking force and Q  is the maximum braking 

force.  
     To describe the train dynamics in each mode, we define [ , , ]Tx s s s    as the 

continuous states vector, where s  denotes the train’s position, s  denotes 
velocity, and s  denotes acceleration. In the hybrid model of the train’s 
movement, the uncertainty inherent in the train’s motion is considered. The 
uncertainty is due to traction and braking ability, weight bearing, climate factors 
and so on, which is modelled by different white Gaussian noises with respect to 

different modes. Let 0k st t kT   be the sampling time instant started from 0t , 

where sT  is the sample interval, and 1, 2,k   . The train dynamics in each 

mode are described as follows. 
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2.1 Train dynamics 

1) Power Mode. The traction force is equal to the maximum power and the 
braking force is zero. The control in power mode is given by p P  and 

0q  . In the power mode, we model the uncertainties as a white Gaussian 

noise. The train dynamics are described by  

 

2 21 / 2 / 2

( 1) 0 1 ( )

0 0 1 1

s s s

s s Power

T T T

x k T x k T 
   
        
      

, (1) 

where Power is white Gaussian noise with mean zero and covariance: 

 2 2[ ] 0.05Power PowerE   2 2( )m s  (2) 

Different covariances are chosen for different modes by analyzing the train 
running conditions and moving data. 

2) Hold Mode. If the train is running at a constant speed, we call this mode 
speed holding or simply hold. When the train is in this mode, the traction 
power changes with various resistances and braking force 0q  . The 

model is given by 

 

21 0 / 2

( 1) 0 1 0 ( )

0 0 0 1

s s

s Hold

T T

x k x k T 
  
       
     

, (3) 

where Hold  is white Gaussian noise with mean zero and covariance: 

 2 2[ ] 0.03Hold HoldE   2 2( )m s  (4) 

3) Coast Mode. There is no power applied and no braking in coast mode, 
i.e. 0p  , 0q  . In the coast mode, the model is similar to that the model 

used in power mode.  

 

2 21 / 2 / 2

( 1) 0 1 ( )
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s s s

s s Coast

T T T

x k T x k T 
   
        
      

 (5) 

The process noise in the Coast mode is   
 2 2[ ] 0.01Coast CoastE   2 2( )m s  (6) 

4) Braking Mode. In the Braking mode, the speed declines by full braking 
force, i.e. 0p   and q Q . The dynamic model is as following:  

 

2 21 / 2 / 2

( 1) 0 1 ( )

0 0 1 1

s s s

s s Braking

T T T

x k T x k T 
   
        
      

 (7) 

The process noise Braking is a white Gaussian noise with mean zero and 

covariance 
 2 2[ ] 0.05Braking BrakingE   2 2( )m s  (8) 
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2.2 Measurement model 

In train control systems, the measurement of train’s speed and position are taken 
by the corresponding sensors. All measurements are subject to uncertainty due to 
the time delay and measurement disturbance. Thus, it can always be 
approximated by a linear model given by 

 
( )1 0 0

( ) ( )
( )0 1 0

s

s

k
z k x k

k



  

    
   

, (9) 

where ( )s k , ( )s k  are Gaussian noise with mean zero and covariance: 
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    (10) 

3 Hybrid estimation algorithm for train tracking 

We rewrite the train dynamics as a stochastic linear hybrid model as: 
 ( ) ( )( ) ( 1) ( )m k m kx k A x k D k    (11) 

 ( ) ( )( ) ( ) ( )m k m kz k C x k k   (12) 

Where ( ) Rnx k  and ( ) R pz k  are continuous state and the measurement 

variables, respectively. ( ) {1, 2,3, 4}m k M   is the discrete state at time k , 

corresponding to four different operation modes: Power, Hold, Coast, and 
Braking. The process noise ( ) ( )m k k  and the measurement noise ( ) ( )m k k are 

uncorrelated Gaussian sequences with zero mean. We use ( )m k j to denote the 

event that the system is in mode j at time k , and ( 1)m k i  to denote the event 

that the system is in mode i at time 1k  . A continuous-state-dependent mode 
transition matrix is defined to describe the evolution of mode ( )m k : 

 , 1,2,3,4( ( 1)) { ( ( 1))}ij i jx k x k      (13) 

 ( ( 1)) : [ | , ( 1)]ij x k p j i x k     (14) 

for , {1,2,3, 4}i j . It is worthy to note that in some linear hybrid estimation 

algorithms, such as IMM algorithm, the mode transition matrix is constant and 
does not depend on the states.  
     We propose an estimation algorithm with different mode transition 
probabilities corresponding to different modes, called Mode-Dependent-Hybrid-
Estimation (MDHE) algorithm. Fig.1 shows a schematic of the MDHE 
algorithm. MDHE also uses a bank of Kalman filters (KF1 to KF4) to compute 
the mode probabilities ( 1)i k  and the continuous state estimate ˆ( 1)x k  . 

However, individual Kalman fitters share information about the other Kalman 
fitters through new initial conditions at each time step. The components of 
MDHE in Fig.1 are described as follows: 
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Figure 1: Structure of the MDHE algorithm. 

1) Mixing probability. This is the probability that the system is in mode i at 
time k , given that it is in mode j at time 1k   ( , {1,2,3, 4}i j ) 

 
1

( 1 | ) ( )ij ij i
j

k k k
c

    , (19) 

        where jc  is a normalisation constant, ( )i k  is a measure of the probability 

that the system is in mode i at time k . It is assumed that (0)i  is given, 

which should be (0) 1i   for a specific mode i , with (0) 0i   for other 

modes.  
2) New initial conditions. For each Kalman filters, the initial states 0ˆ ( )jx k  and 

covariance 0 ( )jP k  are computed by weighting the output of each Kalman 

filters with mixing probability as the weight 

 0
1

ˆ ˆ( ) ( ) ( 1 | )
N

j i ij
i

x k x k k k


   (20) 

 0 0 0
1

ˆ ˆ ˆ ˆ( ) [ ( ) [ ( ) ( )] [ ( ) ( )] ] ( 1 | )
N

T
j i i j i j ij

i

P k P k x k x k x k x k k k


       (21) 

where ˆ ( )ix k  and ( )iP k  are the estimation of state and its covariance of 

KF i  at time k . 
3) Mode Transition Probability. The mode transition matrix is constant in 

the IMM algorithm. In this paper, we utilize the objective velocity-speed 
profile information to model the mode transition probabilities as mode-
dependent probabilities. Each operation mode has a mode transition matrix 
and the system switches among these matrixes depending on the objective 
curve and continuous state.   
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4) Kalman filter. Four Kalman filters run in parallel and each Kalman filter 
computes the ˆ( 1)x k   and ( 1)P k   using the initial conditions 0ˆ ( )jx k  and 

0 ( )jP k . 

5) Mode probabilities update. The probability of mode j at time 1k  is 

computed as follow 

 
1

1
( 1) ( 1) ( )

N

j j ji i
i

k k k
C

  


      (22) 

where C is a normalisation constant, ( 1)j k  is the likelihood function, 

defined as 
 ( 1) ( ( 1);0, ( 1))j p j jk N r k S k      (23) 

where ˆ( 1) ( 1) ( 1| )j j jr k z k C x k k     is the residual of Kalman filter j , 

and ( 1)jS k   is its covariance. 

6) Output. The estimation of state is a weighted sum of the estimates from four 
Kalman filters. The mode which has the highest mode probability is the 
mode estimate. 

 
1

ˆ ˆ( 1) ( 1) ( )
N

j j
j

x k x k k


    (24) 

 
1

ˆ ˆ( 1) { ( 1) [ ( 1) ( 1)]}
N

j j
j

P k P k x k x k


        

 ˆ ˆ[ ( 1) ( 1)] } ( 1)T
j jx k x k k      (25) 

 ˆ ( 1) arg max ( 1)j
j

m k k    (26) 

where ˆ ( 1)m k   is the mode estimation at time 1k  .  

4 Simulations 

We consider an optimal speed-position trajectory of train’s movement as shown 
in Fig.2. 
     The mode transition matrixes of MDHE are chosen as follows: 
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We compare the results of MDHE with that of IMM algorithm with constant 
mode transition matrix as  

I
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Figure 2: The optimal speed-position curve of the train. 
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Figure 3: Comparison of tracking accuracy of MDTHE and IMM. 
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Figure 4: Estimation of modes and their probabilities. 

     Fig. 3 and Fig. 4 compare the tracking accuracy and the mode estimation 
accuracy of the algorithms. The tracking accuracy of MDHE and IMM algorithm 
depends on the design of the mode transition matrix. It is easy to see that MDHE 
has better tracking performance compared with IMM. The result also shows that 
the proposed algorithm improves the accuracy of the operation mode estimation. 

5 Conclusions 

In this paper, a hybrid system model is introduced to describe the train’s 
dynamics. The stochastic factors during the train’s movement are considered in 
this model. A new hybrid estimation algorithm is proposed for the train to track 
the objective velocity-position curve more accurately with mode dependent 
transition probability matrixes. Better tracking performance and the accuracy of 
the algorithm have been illustrated with simulations.  
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