
Automated system testing of an automatic train 
protection system 

B. Friman & T. Andreiouk 
Ansaldo-STS Sweden AB, Sweden  

Abstract 

The testing of safety critical software is becoming more and more automated. 
Automated testing has the advantage that the tests can be carried out much more 
frequently and with more numerous test cases. For low level unit testing, there 
are several good tools available, such as Aunit. For system testing, however, the 
test framework normally has to be specifically tailored for each project, since it 
has to deal with external interfaces, e.g. man-machine-interfaces, and sensor and 
control interfaces. For efficient operation, it is desirable that an automated 
framework for system testing shall be able to serve both in a pure software set-
up, where most of the development is done, and in a hardware set-up, which is as 
close as possible to the environment where the product shall operate. This paper 
describes an automated system testing framework for a SIL 4 safety critical train 
protection system. The testing framework can be used both in the pure SW set-
up and in the HW set-up, and is able to extract its test cases from readable Test 
Specification documents and also produce high quality Test Protocol documents. 
Approximately 98% of the system tests have been automated in this project. 
     The project in question is the development of STM’s (Specific Transmission 
Modules) for Sweden, Norway and Finland. The STM’s carry out train 
protection on national equipped lines – lines that are not equipped with the 
ERTMS (European Rail Transport Management System). A total of 
approximately 1300 test scenarios are executed by the automated testing 
framework. 
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1 Testing of safety critical software 

Safety critical software is normally tested in detail both on module level, and on 
system level. A special requirement for SIL 4 software is that the tests must 
cover all details of the system, and that this coverage has to be documented all 
the way from the code and to the requirement specification. It must also be 
proved that the documented tests are valid for the delivered system, meaning that 
if changes have been done after the tests, then either all tests must be rerun, or 
part of the tests rerun and a proof being presented that the other parts are 
unaffected by the changes. 
     In order to limit the costs of rerunning old tests, many providers of safety 
critical systems have started using tools to automate the unit tests. There are 
different approaches on how to do this – you can for example develop a second 
implementation of each module (n-version programming) and make a set-up that 
runs the twin modules in parallel and compares the outputs. You can also use 
software tools which support writing of test cases and testing the expected results 
automatically. There are several tools available for this kind of testing. Some of 
them are script based. Other, such as A-Unit (for Ada software), use test cases 
that are written in the form of Ada programs. 
     For system testing however, the test framework normally has to be 
specifically tailored for each project, since it has to deal with external interfaces, 
such as e.g. man-machine-interfaces, and sensor and control interfaces. When 
you are testing on system level, the object you are testing remembers earlier 
inputs and it is the sequence of inputs and outputs that defines the system 
behaviour. This means that system testing has to be scenario based. You build a 
scenario from the world where the system is supposed to operate. For a train 
protection system, the scenario is a train that runs along a track. It starts and 
stops, accelerates and brakes, runs forward and backward, and it picks up signal 
information along the track, information which is used to prevent the train from 
entering a dangerous area or running at a dangerous speed. When you test a 
system in the laboratory, you have to build a simulated environment around it. 
The environment for a train protection system consists of a train, a track and a 
driver. This environment typically consists of several specially developed 
hardware systems, and one or more PC computers. Once you have this 
environment ready and running, you can test the train protection system 
manually in the lab. During the testing, you operate the different hardware 
systems, and monitor the result from various displays, PC windows, and logging 
devices. To automate the system testing, you must: 

1. find a way to control and monitor all the equipment from a single program  
2. find a way to write the test cases that enables them to be automatically 

executed and evaluated by this program 
3. find a way to automatically create humanly readable test reports. 

     For efficient operation, it is desirable that an automated framework for system 
testing shall be able to serve both in a hardware set-up as described above, which 
is as close as possible to the environment where the product shall operate, and in 
a pure software set-up, where most of the development is done. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

72  Computers in Railways XII



     This paper describes how we have done this in the STM projects, at Ansaldo 
STS Sweden, in Stockholm. STM = Specific Transmission Module, in practice 
an Automated Train Protection system that runs alongside and in co-operation 
with ETCS (European Train Control System) onboard systems, in order to 
provide continued protection on lines equipped with local (national) signalling 
systems. See ERTMS Subsets 035 [1] and 058 [2] for more information about 
STM. 

2 Manual system testing 

Manual system testing will still be the primary method for the developers to test 
new functions and bug fixes in the software in their daily work. It means that the 
test environment shall both support the manual tests by the developers and the 
automatic tests by the validation team. The natural way to implement automatic 
system testing is thus to build it on top of the manual test environment. 
     The following figure shows a typical system test environment: 

3 Controlling and monitoring the test equipment from a 
single program 

In order to control and monitor the test equipment, we first must find a way to 
communicate with the PC software associated with the different devices. We  
 

 

Figure 1: The photo shows a substantial number of different hardware 
devices connected to each other and to one or more PC computers. 
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Figure 2: The test system overview, now with the controlling and monitoring 
connections included. 

asked the developers of the different software to implement TCP/IP server ports 
which we could connect to, send control directives to and read logged data from. 
We must also find a way to push buttons on the DMI (Driver Machine Interface) 
and to register the information shown on it. To our luck, the ETCS DMI already 
had a serial port dedicated to testing, which enabled us to send simulated button 
pushes using an RS 232 connection. Automatic pushing of buttons is absolutely 
indispensable for automated testing. Had it been required, we have even 
considered building a device with electrically controlled “fingers” for this 
purpose. The registering of information shown on the DMI was no problem, 
since we can pick it up from the high speed bus between the STM vital computer 
and the ETCS EVC (European Vital computer), with the sniffer.  

4 Writing test cases so they can be automatically executed 
and evaluated 

As mentioned earlier, system test cases normally are built as scenarios. In a 
scenario for a train protection system, you describe each event along the track, 
from the time when the equipment is powered-on, to the time when the test is 
finished. A common way to do this is in the form of a table, where inputs are 
specified on the left side, and expected outputs on the right. For automatic 
testing, all inputs and outputs must be machine readable, but they must also be 
humanly readable, so that the meaning of the test is comprehensible. For this  
 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 114, © 2010 WIT Press

74  Computers in Railways XII



Group Pos. Information Acceptance criterion 

--- +10 
•Accelerate to 70 
km/h  

--- 

10 
+290 
(500) 

Si 160/130, 
5000m 

(Preset speed increase exists = No) 
(Linking distance = 1,2*5000 + 100 = 6100 m) 
(Linking margin = 0,2*5000 + 100 = 1100 m)  

11 +200 SH 100, 1000m 

(Reference location = 500 m) 
(Linking distance = 700 - 500 + 1,2*1000 + 100 = 1500 m)  
(Linking margin = 0,2*1000 + 100 = 300 m)  
(Linking distance will be updated because current point < 
primary target point: 1500 < 6100)  

--- +1295 --- 

(Reference location + Linking distance was passed)  
(Balise erasing = SIG)  
•MR ceiling speed = 80 km/h  
DMI indications:  
  •Indicator C5 = Balise failure 2/Fixed_Yellow  
•Text Message = 7UU Signal missing  
•Service brake = Yes  

--- +142 

(Brake is 
autoreleased) 
•Accelerate to 70 
km/h  

•Service brake = No  

Figure 3: An excerpt from a test case for automatic execution. Parentheses 
are used for comments. 

purpose, we have created a symbolic language for signal information and driving 
commands, that both shall be easy to understand, and possible to compile to 
binary data.  
     The test case scenarios have four columns – Transponder id (group), position 
(m), Information, and Acceptance criterion. The information column can contain 
both trackside signalling information (transponder data) and driving commands. 
As you can see, the scenario positions (Pos.) are relative, which makes it easier 
to later insert or remove lines in the scenario. The absolute locations will be 
automatically calculated by the script. 

5 Distilling test cases from the test case database 

In order to automatically distil the files needed to run the tests, from the test case 
database, we must first export it into a public format. We chose to export it to 
html, since our database tool – DOORS – had the possibility to export to html. 
XML would have worked too, if DOORS had been equipped with an XML 
exporting facility.  
     Below we have used the command <filtersvs> to distil all the test cases in the 
database. Only the end of the summary is visible in the figure: 
     The test base database is approximately 1000 pages long, when printed out. 
The distilling script requires approximately 45 seconds to convert the html-
version of the database to the files needed for running the tests. If you want to 
test not the entire test database, but only a chapter, it is also possible to extract a 
single chapter or a single test case. 
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Figure 4: After running the distilling script, we get a list of all files generated, 
and a summary of the number and length of the scenarios. 

     The distilling script also checks the syntax of all the scenario information, 
including position information, trackside data, train running commands and 
acceptance criteria, example of output when a fault is found. Example: 
*** UpdatePos: Unable to understand: "stop-pos. +70". Chapter = 3.1.4.3.1.2: a. 
File="out.htm", line=30434. 
      The distilling function also contains a trackside data compiling function. For 
the ATP-systems we are designing, the trackside data consists of telegrams from 
transponders which are placed on the rail, and from which the train collect 
information about signals and fixed speed restrictions along the track. In this 
example you can see both the symbolic notation and the compiled binary data.  
51  400  4 8 9  9 2 12 /Si 130/160, 500m 
     It says: At position with id 51, located 400 m after the start of the test case, 
there are two transponders, one with the telegram 4 8 9 and one with the 
telegram 9 2 12, and the tell that the train has passed a signal with main signal 
speed 130 km/h, distant signal speed 160 km/h, and distance to next signal 
500m. The amount of binary data is very small in this example, since Sweden 
was first in the world with ATP systems, and the transponders at that time could 
only host 12 information bits each. Modern transponders can host up to 800 
information bits, thanks to better coding and CRC-technology. Here is an 
example from Finland which use 180-bit balises, in this case the complete 
telegrams, also the CRC-code is included: 

2 200 /Si 200/200, 2500m -0,8% Sw: 80, 263m -1% +150m Sw: 35, 4900m +90m 
   |2211 3111 1EEE EEED 3D3D 855E EEEE 1865 2845 EE2A 153E E62C 76D5 66BE 
EF47 BD74 
   |3211 3111 1EEE EEED 3D3D 855E EEEE 1865 2845 EE2A 153E E371 6304 CF9E 
570E 39DE 
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     It says that, there is a transponder group at position 200m after the start of the 
test case, in which there is a signal with id=2, main signal speed 200 km/h, 
distant signal speed 200km/h, plus information of distance to next signal, and 
two switches which reduce the allowed speed of the train. 

6 Running the test cases in a PC environment 

At earlier stages of development, most tests are run in a PC environment. All the 
equipment that the tested ATP needs to communicate is then simulated by PC 
programs. Some of these simulators are written in Ada, others are written in a 
script language (X). In our case, we need simulators for the following 
equipment: 
 ETCS (European Train Control System) – the European standard ATP 

system. Written in Ada. Brake curve algorithm by Friman [3] is used. 
 The train, including acceleration, braking, driving forward, reversing, 

changing cabin, measuring brake pressure, etcetera. Written in Ada. 
 The track, including transponders which shall send data when the train 

passes them. Written in Ada. 
 A profibus sniffer, which in the real test will be connected to the physical 

profibus connection between the STM (national ATP) and the ETCS 
(European standard ATP). Written in script language. 

 A recorder, which is part of the STM to be developed, and will play a role in 
extracting test results in the real tests. Written in script language. 

 ETCS DMI, which in the real test set-up is an LCD device with pressure 
sense surface to enable pushing buttons. The DMI has an input interface 
(RS232) that enables automatic pushing of buttons. Written in Ada. 

 The driver. For automatic testing, also the driver is simulated. Written in 
script language (X). 

     For all these simulators to work together, there is a script which co-ordinates 
the entire tests. In this script you can order the test of a separate chapter, or the 
entire test database. Example:  <test 3.1.5+>. The “+” means that all the 
subchapters shall also be included in the test. 
     The test is started by specifying which chapter in the test database shall be 
tested. If the chapter is on high level, example chapter 3, then a large number of 
scenarios will be run before the tests ends. If a low level chapter, e.g. 3.1.4.3.1.3 
is specified, then a single scenario is run, but also a single scenario can take long 
time to run, e.g. one hour. A single scenario is separated into several test cases, a, 
b, c etcetera, which test different requirements belonging to the same chapter. If 
a single test case is specified (e.g. <test 3.1.4.3.1.3_g>, then the test co-
ordination script will first run the common initialisation part of the scenario, then 
jump to test case g. 
     During the test, all output data are saved in an output data file. Here follows 
an excerpt from an output data file: 

20547 (70 km/h) Service brake = Yes 
20586 (70 km/h) MR ceiling speed = 150 km/h 
20586 (70 km/h) V_PERMIT = 150 km/h 
20586 (70 km/h) V_INTERV = 160 km/h 
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20586 (70 km/h) Button F8 = Loss/On 
20586 (70 km/h) Indicator C3 = 150/Fixed_Green 
20617 (70 km/h) Button F8 = Off 
20617 (70 km/h) Service brake = No 
20652 (70 km/h) Text Message = 6 L U 
20652 (70 km/h) Indicator C5 = Balisfel 1/Fixed_Yellow 
20850 (70 km/h) Indicator C5 = Off 

 
     The excerpt above shows the output data between position 20547 and 20850 
in a test scenario. The output data is seen as a number of variables which can 
change value. A logging is done every time a variable changes its value. In the 
example above we can both see changes on the DMI (e.g. Button F8= Off) and in 
the brake interface (e.g. Service brake = yes). Since all variable changes are 
logged, it will later be possible to determine the value of each variable at any 
given position, just by searching for the last time it was changed before the given 
position. 

7 Test report generation 

A test report is automatically generated after the end of a test scenario. 
     The test report contains the test cases, the output data, and an evaluation, 
PASS or FAIL, of each acceptance criteria. The test report generator, starts with 
the table containing the test cases, then evaluates the acceptance criteria and adds 
a column with the evaluation result, then merges this table with the output data 
file, and finally converts the now 8 column wide table into an RTF document.  
 
 

 

Figure 5: The test co-ordination script will start all the simulators, and put the 
windows of those that shall be visible during the test, on the PC 
screen. 
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Input = svs_3.1.4.3.1.5_a_e4s1.ida Output = svs_3.1.4.3.1.5_a_e4s1.oda  
Grp Pos Information Acceptance criterion Pos + 

marg 
Spd Test output Res. 

11 700 SH 100, 1000m •(Reference location = 500 m)  
•(Linking distance = 700 - 500 + 
1,2*1000 + 100 = 1500 m)  
•(Linking margin = 0,2*1000 + 
100 = 300 m)  
•(Linking distance will be updated 
because current point < primary 
target point: 1500 < 6100) 

704 70 MR target distance = 1200 m - 

- - - - 1693 70 V_PERMIT = 130 km/h  
Permitted Speed Bar = 130/Grey  
V_INTERV = 140  km/h  
D_TARGET = 0 m  
Target Distance Bar = 0  
Indicator C2 = Off  
Indicator C3 = 130/Flash 
Slow_Green 

- 

- 1995 - •(Reference location + Linking 
distance was passed)  
•(Balise erasing = SIG)  
•MR ceiling speed = 80 km/h  
•Indicator C5 = Balisfel 
2/Fixed_Yellow  
•Text Message = 7UU Signal 
missing  
•Service brake = Yes 

1992 70 MR ceiling speed = 80 km/h  
Release speed = 10 km/h  
Text Message = 7 U U  
V_PERMIT = None km/h  
Permitted Speed Bar = Off  
V_INTERV = None  km/h  
Intervention Speed Bar = Off  
Indicator C3 = FEL/Flash 
Fast_Green  
Indicator C5 = Balisfel 
2/Fixed_Yellow  
Indicator C7 = 
Tågöverv/Fixed_White 

PASS  
PASS  
PASS  
FAIL 
(value
=No) 

Figure 6: Example excerpt from a test report. 

     Both the evaluation of the test criteria and the merging of test cases with 
output data require some amount of arithmetic calculation. For evaluation, it 
must be decided at which position the expected value shall be compared with the 
logged value. The calculation must then take into account the delays in the ATP 
system. A similar calculation is done in the merging, in order to decide whether 
an output data logging shall be on the same line or a different line as a line in the 
test case scenario. The test report contains all output data, not only those needed 
to evaluate the acceptance criteria. This is an advantage, because even if a test 
case is targeted to test a specific requirement, manual analysis of other output 
data can sometime reveal interesting insight in how the system works. Errors in 
other requirements can also be discovered earlier, by analysing the output data. 
In Ansaldo STS Swedish STM project, the customer has decided to allocate 
some of its own experts to analyse the output data of the automated tests. 

8 Running automated tests on the real hardware 

The scripts which distil the test cases, and those which co-ordinate the automated 
tests and create the test reports, are written so that they shall be compatible with 
both the PC based environment and the real hardware environment. You can see 
a picture of the real hardware test environment in section 2 above. The input files 
and the output files will look exactly the same. The script will adapt to the 
changes in the interfaces. For example, in the real hardware environment, a 
profibus sniffer is used to monitor the output data from the STM, and a serial 
interface RS232C to send simulated button pushes to the DMI. In the PC based 
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test environment, all interfaces use TCP/IP. There are other differences. In the 
real hardware environment, there are ID-plugs which contain installation 
parameters for both the ETCS and the STM. In order to test the function of these 
parameters, the system has to be manually restarted after each change of ID-plug. 
In order to minimise these manual interceptions, the test case distilling script 
contains a sorting function so that all test cases which use the same combination 
of ID-plugs, can be run in an unbroken sequence. 

9 Conclusions 

Automated system testing is today an obvious part of the daily work at the 
validation department of Ansaldo-STS Sweden. It does the tedious work of 
repeating old test every week, and enables the personnel to focus their efforts on 
developing new and exploratory tests. The increased amount of testing also 
appears to boost project performance. Site acceptance test 1 for STM Finland 
was successfully completed in record time, in April 2010. Finally, it can be 
mentioned that the customers have expressed their trust in the automated system 
tests and how they are repeated and documented. 
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