
Taking advantage of some complementary
modelling methods to meet critical system
requirement specifications

F. Defossez1, P. Bon1 & S. Collart-Dutilleul2
1INRETS, ESTAS, Villeneuve d’Asq, France
2LAGIS, École Centrale de Lille, France

Abstract

This paper aims at showing how it is possible to combine the advantages of high-
level Petri nets and the B method in order to design safety applications. In the rail-
way critical software domain, safety requirements are obviously severe. Indeed,
the passing from an informal specification to a formal one is a crucial point in
critical software development. High-level Petri nets combine three important fea-
tures: a graphical representation, a dynamic behaviour and an abstraction of the
treatments. The B method allows one to pass from an abstract specification to
a concrete implementation. We propose an approach that integrates the structur-
ing and modelling of the system behaviour by means of coloured Petri nets from
semi-formal specifications and the generation of a B abstract specification from
this Petri net.
Keywords: railway critical systems, safety, formal methods, model translation,
high-level Petri nets, B method.

1 Introduction

The technological progress of safety automation in railway systems involves a
growing complexity of functional safety requirements. Thereby, this leads to the
use of some technical tools for analysis and command synthesis that are more and
more complex and efficient in order to respect the requirements. Moreover, the
introduction of new European standards for railway safety has led one to recon-
sider critical system requirement specifications modelling.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 153

doi:10.2495/CR080161

In such a context, formal methods seem to be one of the most adapted solu-
tions. Indeed, their use in process development increases the understanding of the
requirements and clarifies their expression. They also allow the verification and
validation of the specification and make implementation easier. Nevertheless, their
notation may be complex and difficult to understand.

In this paper, we put forward the hypothesis that the UML notation, Petri nets
and the B method are widely used to model railway systems. Among other appli-
cations, they are used to model and validate real-time distributed railway systems.
We focus on these methods, first in underlining their strengths and drawbacks, then
in showing how they can be complementary. This is the purpose of the second part
of this paper.

The aim of the article is not to design a new specification notation, but to com-
pose existing ones to benefit from their complementary strengths. Indeed, these
skills can be used together in order to increase the reliability of a railway applica-
tion. Thus, formal methods can compensate for a lack of mathematical foundation
of some models. The third part of this article describes a method found in the
literature aimed at generating a formal B specification from UML diagrams.

Finally, we present our method which proposes an automatic translation of a
high-level Petri net into B abstract machines. First, it consists of designing the Petri
net from the extraction of key words from the specifications. Then, we upgrade the
obtained Petri net by means of refinements. Eventually, the abstract machines are
built in order ending with a classical B process.

2 Tools used to model railway systems

In this section, we focus on the three methods, in underlining their strengths and
drawbacks and in showing how they can be complementary.

2.1 UML

The UML notation has become an industrial standard for the object-oriented mod-
elling of software applications [1]. It is used to identify the requirements and
describe the system. Its graphical nature makes discussions easier for the differ-
ent actors of a project.

The UML notation makes it possible to model an application according to an
object view, by means of several different diagram types. Thus, each diagram
allows a particular view of the system. As a result, the diagrams allow a deep
analysis and understanding of the system architecture and implementation details,
as well as system functioning and operational features.

2.2 Petri nets

The Petri net formalism is a well-known graphical executable technique for the
specification and analysis of concurrent discrete-event dynamic systems [2]. It is

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

154 Computers in Railways XI

a relevant tool for describing and studying systems that are characterized as being
concurrent, asynchronous, distributed, parallel, non-deterministic or stochastic.

As a mathematical tool, it is possible to set up state equations, algebraic equa-
tions, and other mathematical models governing the behaviour of systems. Having
this rich mathematical background with precise semantics, it is proposed as a com-
munication method enabling specialists of the domain, who are not accustomed to
formal methods, to share their knowledge.

There are several extensions of this model: timed Petri nets, stochastic Petri
nets or high-level Petri nets are some examples. This last extension is used in our
method described in Section 4. Indeed, a realistic modelling of a complex system
often requires one to reason about the nature of the tokens and about their transfor-
mation. With this aim in view, high level Petri nets allow the annotation of the net
by means of a first order language. So tokens are expressions of the language and
the transformations from one state to another are described by the formulas anno-
tating the transitions. To sum up, high level Petri nets handle structured tokens and
are annotated with a first order language. We use particularly coloured Petri nets
[3], based on a functional language.

2.3 The B method

The B method, introduced by J. R. Abrial [4], is a formal method for the develop-
ment of specifications and their refinements to an implementation. It is a collection
of mathematically based techniques for the specification, design and implementa-
tion of software components. As a result, it is able to manage strong operating
constraints applied to rail systems, such as CENELEC standards. Moreover, the
B method seems to be the most appreciated method in the industrial world for
railway critical software development such as METEOR [5].

The abstract machine is the basic element of B development. It models a system
described by a set of data or variables and by the associated operations that modify
their state or their value. An abstract machine is composed of:

• data declarations:
– parameters,
– variables,
– constants,

• an invariant, that consists of a predicate on the previously declared elements
and gives the types,

• a definition of the initial state,
• operations that define the actions modelling the state changes.

The B tools allow us to generate automatically the proof obligations for each
abstract machine. The refinement process is a set of successive transformations
from the initial model that aims at clarifying the abstract representation into a
concrete model. At the last refinement, called the implementation, we obtain a
secure software.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 155

3 From UML to B

As explained previously, a benefit of using UML is its status as an international
standard and its widespread use in the software industry. Nevertheless, it is only a
semi-formal modelling tool. On the other hand, the B method is a formal method,
already used in the railway industry, but its notation may be complex and difficult
to understand. Moreover, a model analysis requires mathematical skills which are
unusual in industry.

This section reminds us of a method presented in the literature [6] aimed at com-
bining the advantages of UML and of the B method in order to design safety appli-
cations. During the critical software development process, safety requirements
must be traced from informal specification to code generation.

This method aims at transforming a semi-formal modelling (UML) to a formal
specification (B method) which enables them to be traced. In fact, it is able to
develop safety critical systems by providing a semantic for a subset of UML and a
systematic translation to the B method.

4 From specifications to formal implementation

We present our method to consider the translation from a high-level Petri net into
the B method in order to integrate the methodology in a global issue of safety
requirements. The process consists of covering a part of the software develop-
ment. We propose a method of graphical description in order to obtain a formal
specification as abstract machines from informal specifications. In order to obtain
a more accessible specification, the method is built on four steps:

• modelling: permits one to obtain a graphical model of the specifications,
• interpretation: annotates the graph with natural language in order to com-

plete the model,
• formalisation: transforms the annotations to obtain a high-level Petri net,
• translation: translates the Petri net into abstract B machines.

We apply this specification method to a case study presented in the next section.

4.1 Railway case study

In order to present the main aspects of the two formalisms and to show how they
can be complementary, we chose a case study presented in [7]. Let us introduce a
railway network specified by the following general rules:

1. the network is closed loop composed of seven elementary tracks,
2. two trains run in the same traffic direction,
3. two trains can’t be on the same track,
4. there must be a free track between two trains.

In [7], this problem is specified with an elementary Petri net. This Petri net is
quite heavy: it is composed of 21 places, 14 transitions and 84 arcs. This example
underlines a limit in the use of elementary Petri nets to model complex problems.
Thereby, in such a case, it is necessary to use high level Petri nets.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

156 Computers in Railways XI

CdV 0

CdV 1

CdV 2

CdV 3

CdV 4

CdV 5

CdV 6

Train a

train b

Figure 1: Schematic representation of the case study.

4.2 Modelling by means of a Petri net

In the first step of our method, the system described in the specifications is repre-
sented graphically as a Petri net. The main point of this step is the respect of the
functional safety requirements. The identification of elementary actions, data of
the system, constraints to respect and dynamic aspects permits one to structure the
model.

Indeed, we have to collect as much information as possible with the Petri net in
order to simplify the annotations in natural language and, as a result, the mathe-
matical formulas which will follow them. We try to identify four kinds of words in
the specifications, that each correspond to a precise component of the Petri net:

• actions, modelled with transitions,
• data, characterised by the state of the places,
• constraints to respect, described by annotations,
• dynamic aspects (events management), modelled by transitions and arcs.

4.3 Interpretation of the specifications

The second step of our method consists of labelling the graph obtained in the
modelling phase. These annotations, expressed in natural language, have to be as
close as possible to the specifications. This step is linked to the modelling phase
and they can be lead at the same time. Thus, we obtain directly the natural language
annotated Petri net.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 157

4.4 Modelling and interpretation of the specifications of the case study

As expressed in section 4.2, the transitions of the Petri net model the passing from
a track i to a track i + 1. A place before this transition models the presence of a
train in the track i, and another shows if the track i + 1 is free and permits the
passage from i to i + 1. Thereby we consider tracks as resources that the train uses
when it is on a track.

Then we have to model the constraint aiming at keeping a free track between two
busy ones. In order to respect this constraint, the place modelling the availability
of the track i is linked with the transition modelling the passage of a train from the
track (i − 1) mod 7 to the track i. This transition is linked to the place modelling
the availability of the track (i − 2) mod 7.

So we need 7 places modelling the presence or not of a train in a given track.
There could be coloured tokens in these places permitting us to characterize the
different trains. Each transition is annotated with a sentence that sums up the mod-
elled action, and each place with a sentence that models the state of the system
if it contains a token. The tokens, which model the presence of a train in a given
track, are coloured. They specify the type of train (ta or tb) that occupies the track.
Finally, we obtain the annotated graph of Figure 2.

S0

filled

by a

train

S1

filled

by a

train

S2 filled

by a train

S3 filled

by a train

S4

filled

by a

train

S5

filled

by a

train

S6 filled

by a train

Passage

of a train

from S0

to S1 Passage

of a train

from S1

to S2

Passage of a train

from S2 to S3

Passage

of a train

from S3

to S4Passage

of a train

from S4

to S5

Passage

of a train

from S5

to S6

Passage

of a train

from S6

to S0

S0 free

S1 free

S2 free

S3 free

S4 free

S5 free

S6 free

Sx : Section x

Figure 2: Annotations in natural language of the graphical model.

4.5 Formalisation

The third step of our method consists of converting the annotations of the Petri
net into mathematical formulas. These formulas have to be as simple as possible

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

158 Computers in Railways XI

and expressed as constraints. This step can be improved by means of a refinement
of the Petri net: we can eventually gather some transitions (folding of the net), or
integer new elements to improve the model.

The formalisation step permits us to obtain the coloured Petri net of Figure 3.
The initial marking of the Petri net indicates that the track 0 is occupied by a

train ta and the track 4 by a train tb. That implies that the markings of the tracks
1, 2 and 5 are free. As explained previously, the Petri net can be reduced, if the
tracks are not marked by simple tokens, but if we take their number into account.
This allows a consistent simplification of the net: overall we obtain a Petri net
only composed of 2 places and 1 transition that can be found in Figure 4. The
marking becomes, for one place, numbers indicating the free tracks and, for the
other, couples that indicate that one train is on a identified track.

1 ta Train

Busy0x1 1 ta

Train

Busy1x

TrainBusy2x

TrainBusy3x

1 tb Train

Busy4x 1 1 tb

Train

Busy5x

Train Busy6x

Move0 1

Move1 2

Move2 3

Move3 4

Move4 5

Move5 6

Move6 0

Arc1 Arc2

Arc3

Arc4

Arc5

Arc6

Arc7

Arc8

Arc9Arc10

Arc11

Arc12

Arc13

Arc14

CdV

Free0

1 free

CdV
Free1

1 1 free

1 free

CdV
Free2 1 1 free

CdV

Free3
CdV

Free4

1 free

CdV
Free5

1 1 free

CdVFree6

Arc15

Arc16

Arc17

Arc18

Arc19

Arc20

Arc21Arc22

Arc23

Arc24

Arc25

Arc26

Arc27

Arc28

y

x

Color Train with ta tb

Color CdV with free

var x : Train

var y : CdV

Figure 3: Coloured Petri net modelling of the case study.

4.6 Translation from the Petri net model to B

In this last step, an automatic transformation into a B abstract machine is applied
to the Petri net of Figure 4. Our approach consists of defining, first, a B machine
corresponding to the system modelled with a Petri net. Then, this machine is clari-
fied by the definitions of the generic structural properties of Petri nets. Finally, the
translation is completed with the integration of the dynamic properties of the Petri
net.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 159

1 0,ta

1 4,tb CdV × Train

Busy

2 1 0,ta 1 4,tb

1 1

1 2

1 5 CdV

Free

3 1 1 1 2 1 5

Moving

i = (− 1) mod 7

k = (+ 1) mod 7

(j,x)

(k,x) k

i

Color Train with ta tb

Color CdV with 0 1 2 3 4 5 6

var x : Train

var i : CdV

var j : CdV

var k : CdV

Figure 4: Simplified Petri net model of the case study.

������ ��������

����	
�� �	
�����

���� ����� = {��, ��}
��������� ���

�������� ��� = {�
� | �
� ∈ �� ∧ �
� � 0 ∧ �
� � 6}

����������

��� ������ == � , � , � , � �

��� ��� ������ == � ∈ ��� ∧ � ∈ ��� ∧ � ∈ ��� ∧ � ∈ ����� �

�	��� ������ == � = ((� − 1) mod 7) ∧ (�� = (�� + 1) mod 7) �

������ �	�� ������ == �� �����(��
�� �	��) <+ {(�� �→ ��) �→ 1} �

������ ��� ������ == �� �����(��
�� ���) <+ {�� �→ 1} �

������ ������ �	�� == �� �����(��
�� �	��) <+ {(�� �→ ��) �→ 1} �

������ ������ ��� == �� �����(��
�� ���) <+ {�� �→ 1}
��� ������ == � , � , � , � �

��� ��� ������ == � ∈ ��� ∧ � ∈ ��� ∧ � ∈ ��� ∧ � ∈ ����� �

����
�� ������ == ∃��� ������ .(��� ��� ������ ∧ �	��� ������

∧ �� !	����(������� ��� ������ ,!���� ���,��
�� ���)
∧ �� !	����(������� �	�� ������ ,!���� �	�� ,��
�� �	��))

���������

!���� �	�� �!���� ���

���������

!���� �	�� ∈ �! (��
�� �	��) ∧ !���� ��� ∈ �! (��
�� ���)
��������������

!���� �	�� := �� �����(��
�� �	��) <+ {(0 �→ ��) �→ 1, (4 �→ ��) �→ 1}
|| !���� ��� := �� �����(��
�� ���) <+ {1 �→ 1, 2 �→ 1, 5 �→ 1}
������

"� ������ =
������ ����
�� ������

���� ��� ��� ������

�����

�� !	����(������� �	�� ������ ,!���� �	�� ,��
�� �	��)
∧ �� !	����(������� ��� ������ ,!���� ���,��
�� ���)
∧ ��� ��� ������ ∧ �	��� ������

����

!���� �	�� := �� ���(�� #���(!���� �	�� ,������� �	�� ������ ,

��
�� �	��),������� ������ �	�� ,��
�� �	��)
|| !���� ��� := �� ���(�� #���(!���� ���,������� ��� ������ ,

��
�� ���),������� ������ ���,��
�� ���)
��

��

��

Figure 5: Abstract machine corresponding to Figure 4.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

160 Computers in Railways XI

High-level Petri nets handle multi-sets. In order to translate a high-level Petri
net into B, we have to specify an abstract machine which defines these multi-sets,
their properties and their associated operations. Concisely, the machine that pre-
cisely gives the multi-sets is not presented in this paper. At the end of the process,
described in [8], we obtain the abstract machine of Figure 5.

5 Conclusion

We described in a study case an approach aiming at using high-level Petri nets
within the framework of the specification of dynamic systems. The systematic gen-
eration of B specifications from the Petri net model allows us to consider the use
of the tools linked to the B language in order to continue the conception process.
Our method combines strengths of two existing formal methods.

We want to integrate this method into a more global safety analysis process.
Some works have been done to take temporal requirements into account [9]. These
describe how a critical system, such as a level-crossing, can be modelled with time
Petri nets in order to evaluate and validate its safety. We aim at building a global
methodology from the modelling of temporal requirements of critical railway sys-
tems to their automatic implementation by means of formal methods.

References

[1] Unified modelling language version1.4. Technical report, OMG, 2001.
[2] Murata, T., Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 1989.
[3] Jensen, K., Coloured Petri Nets: Basic Concepts, Analysis Methods and Prac-

tical Use (volume 1). Springer-Verlag, 1992.
[4] Abrial, J.R., The B Book - Assigning Programs to Meanings. Cambridge Uni-

versity Press, 1996.
[5] Behm, P., Benoit, P., Faivre, A. & Meynadier, J.M., METEOR : A successful

application of B in a large project. Proceedings of FM’99: World Congress on
Formal Methods, pp. 369–387.

[6] Boulanger, J.L., Bon, P. & Mariano, G., From UML to B - a level crossing
case. COMPRAIL, pp. 351–359, 2006.

[7] Genrich, H., Predicate / Transition nets. Springer-Verlag, pp. 3–43, 1991.
[8] Bon, P., Du cahier des charges aux spécifications formelles : une méthode

basée sur les réseaux de Petri de haut niveau (In French). Thèse de doctorat,
Université des Sciences et Techniques de Lille, 2000.

[9] Defossez, F., Collart-dutilleul, S. & Bon, P., “Formal methods and temporal
safety requirements: a level crossing application”. FORMS/FORMAT, Braun-
schweig, Deutschland, pp. 351–359, 2007.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 161

