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Abstract

This paper describes the formal verification of an interlocking system. We have for-
mally proved the non-derailing and non-collision safety properties for an existing
interlocking system operating on Paris Metro’s line 3Bis. These high-level prop-
erties have first been refined to an intermediate level permitting their expression
in terms of the control system’s inputs and outputs. The resulting properties have
then been formalised in the Prover iLock Verifier engine’s internal language. The
Prover iLock Verifier engine is a COTS commercialised by Prover Technology.
For this project some specific features have been added to the engine to provide
certified proofs that can be used, instead of testing, in the SIL-4 qualification pro-
cess of interlocking systems.

Keywords: formal verification, interlocking application, proof certification, envi-
ronment modelling.

1 Introduction

Interlocking systems are safety critical systems and thus require thorough valida-
tion before being set into operation. Usually, this validation is performed by means
of testing and even though the experience of several decades shows that intensive
testing is a very safe approach, it is also very expensive: the experience of RATP,
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operator of the Paris metro, reports that testing a medium range interlocking sys-
tem requires many man months of work.

With the advent of computer technologies, another validation technology
becomes available which consists of formally proving that a safety critical sys-
tem is safe, i.e. it is able to prevent any dangerous situation to happen. This formal
validation approach can be applied in two different ways:

Deductive proofs of a generic software: This approach is based on challenging
mathematics to prove that the software will behave safely by construction and
thus can be applied once and for all independently of the particular track layout it
will be applied to. This approach has been advocated by many authors [1,2] and
has been successfully applied to another safety related problem, the problem of
driverless metros [3].

Model-checking each particular system: This approach is based on less demand-
ing mathematics because it aims to validate a more concrete system, such as an
actual interlocking system operating on a specific track layout. Thus the set of
possible states that this system can reach is finite and a computer could explore all
of these states so as to check whether some are dangerous. This is the celebrated
Model-Checking technology [4,5].

Clearly, both approaches have their pros and cons. Deductive methods are
applied only once but require challenging mathematics and thus a very skilled
personnel. Also, the initial investment can be very high. Model-Checking is less
demanding in terms of personnel but it has to be applied to each particular instal-
lation. Still this issue can become less critical if, after some initial investment, the
validation of each new installation can be automated. It was the objective of the
PROOFER project to study this later possibility by showing that this can be turned
into a truly industrial process. This work has been jointly conducted by Prover
Technology, solution provider for the formal verification of rail control systems,
Verimag, an academic laboratory specialised in formal methods, jointly held by
CNRS, University Joseph Fourier and Institut national polytechnique de Greno-
ble, Thales Rail Signaling Solutions (TRSS), provider of computerised interlock-
ing systems and RATP and has been supported by PREDIT, the French research
program in land transport. This paper aims at reporting on the achievements of this
project.

1.1 Related works

Undoubtedly, formal methods have been particularly active in interlocking sys-
tems [6—10]. This may be due to the fact that these systems are both safety-critical
and have a very logical flavour which makes them particularly well suited to for-
mal reasoning. Yet their strong complexity makes them quite sensible to com-
binational state explosion. Very soon it appeared that SAT-based methods com-
bined with induction [7,9] were particularly well adapted to handle this explosion.
Many studies have been devoted to comparing these methods with others: sym-
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bolic BDD-based methods [11] and abstraction methods [6]. Other approaches
have been based on modelling [10] and on artificial intelligence methods [9].

Literature on the application of formal methods to rail control systems is mostly
devoted to experiments, which are quite far from real-world applications, the later
ones being mostly covered under industrial non disclosure. This makes compar-
isons with the objectives of this project difficult. Yet, in Prover Technology’s long
experience on formal verification of rail control systems, the problem addressed
during this project is amongst the most complex ones encountered, both in terms of
state space and the high-level safety properties that are analysed. This thus makes
the unique feature of the experiment reported here.

1.2 Paper’s content

The second section presents an overall view of the proposed validation method,
while the following sections will be devoted to giving insights on particular points:
the third section focuses on the formalisation of safety properties, the fourth sec-
tion discusses issues of environment modelling, and the fifth section highlights the
proof certification technique used in the project. Finally, in conclusion we present
the main results that have been obtained and the future work currently in progress.

2 The overall view of the validation process

The interlocking system that has been the basis for this work is the PMI Interlock-
ing Solution provided by TRSS and chosen by RATP to equip different lines of its
network.

Before explaining the validation process in section 2.2, the following section
gives a brief description of the PMI system, in order to define the parts of the
system that are covered by the formal verification.

2.1 PMI Interlocking Solution

The PMI Interlocking Solution is made of several subsystems: a local control and
supervision subsystem which is mainly in charge of the signalmen dialogs and
the communication with the centralised traffic control system; a SAM subsystem
which is used for maintenance and helps the operator to diagnose encountered
problems; and an MEI subsystem which constitutes the safety critical core of the
system.

The MEI is interfaced with the field equipment and the local control and super-
vision subsystem. It is in charge of the execution of the signalman’s controls and
must ensure the appropriate control of the field equipment in order to guarantee
the absence of dangerous situations. The interlocking application is implemented
in the MEI software, constituted of two parts:

e A kernel software which ensures the internal functions such as field I/O, syn-
chronisation, communication and graph interpretation. This piece of soft-
ware is independent of any particular station.
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e A specific software, built with the parameterisation tools developed by TRSS

for PMI systems, implementing the interlocking logic of a particular station.

The specific software is developed using a graph formalism, similar to Petri

Nets, specific to the PMI system. The interlocking logic is first implemented as

generic concepts in this formalism. In order to build the interlocking application

of a specific station, the generic graphs are instantiated using the station’s track

layout so that generic objects, representing for example track circuits or points as

well as routes, are given specifics names representing specific objects of the track
layout. The resulting instantiated graphs are called applied graphs.

2.2 Validation process

The validation process for the MEI software takes into account the specific design
of this software that separates it in two distinct parts: the kernel software and the
applied graphs. As the kernel software is independent of any particular interlocking
application, its validation can be done once and for all. The applied graphs on the
other hand are to be validated each time a new station is equipped.

The validation of the kernel software is achieved by testing processes following
the requirements of the CENELEC EN 50128 standard [12] for SIL-4 software.
The formal validation process aims to validate the applied graphs.

The formal validation solution is built upon the Prover iLock Verifier engine
which is a Component Off The Shelf commercialised by Prover Technology. In
order for the proof engine to take into account the applied graphs, they must first
be translated into the internal formalism of the Prover iLock Verifier engine. The
execution semantics of the applied graphs is informally expressed by the algo-
rithm of the graph interpreter which is part of the kernel software. This algorithm
has been analysed and formalised into an execution model included in the transla-
tion. The translation is done automatically by a tool specifically developed for this
project by Prover Technology. The formalisation of the execution semantics of the
applied graphs has also been fully documented and justified by Prover Technology.

The validation process is shown in Figure 1. The translated applied graphs are
provided to the Prover iLock Verifier engine along with the safety properties that
the software must satisfy. The safety properties are obtained by analysing the dan-
gerous situations that must be avoided. These dangerous high-level situations are
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Figure 1: Validation process of the applied graphs.
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derailing of a train and collision of two trains. How these high-level situations are
formalised into safety properties for formal verification is described in the follow-
ing section.

Proving safety properties may fail if inputs and outputs representing the field
equipment are left completely free. This would mean that the trains can circulate
without respecting the lineside signalling or that the points can move without being
controlled. A model of the environment must thus be developed in order to restrain
its behaviour. The environment modelling will be discussed in section 4.

The proof engine will formally verify that the safety properties are satisfied by
the applied graphs. If a safety property can be violated by the applied graphs,
the proof engine will provide a counter-example showing a possible execution
of the applied graphs that leads to the violation of the property. The analysis of
the counter-example permits either to debug the applied graphs or to adjust the
environment model. In order to trust that formal verification results are correct, the
project utilises proof logging and independent checking of proofs, as discussed in
section 5.

3 Safety properties formalisation

The safety properties one would ideally like to formally verify are high-level
properties; the interlocking system should prevent collisions between trains and
train derailment. Unfortunately, checking such high level properties would require,
besides a model of the interlocking program, also a full model of the environment,
defining in details train movements, how drivers obey wayside signalling, how
points move when controlled etc. Though such modelling is not out of reach in
theory, specifying it would be difficult and error prone. In particular, one would
have to be very careful not to over-constrain the model; it could lead to exclud-
ing real-life situations from the environment model. Also, such a detailed model
could increase the complexity of the model and worsen the combinational explo-
sion problem.

However, these high level properties can be refined into more manageable prop-
erties based on the various situations that can be considered, such as front colli-
sion, rear collision, side collision, derailment on badly set points, etc. Properties
are finally instantiated on a particular track layout, e.g., on which route does the
collision take place, on which point does the derailment take place, etc.

The proposed solution consists of two steps:

1. Define medium-level safety properties in terms of variables of the MEI, by
means of an informal analysis performed by railway engineers on fault-trees
describing the high-level safety properties;

2. Instantiate these properties on the actual track layout and formally verify
them against the translation of the interlocking system. When a check fails,
a counter-example is returned and a human analysis is performed in order to
determine whether this is actually due to a bug in the system or whether this
counter-example is indeed an unrealistic one due to an inaccurate environ-
ment modelling. In the later case, environment constraints are introduced
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up to a point where the counter-example disappears and the property can
be proved. The way these environment constraints are defined is addressed
in section 4. This method of modelling progressively the environment is
expected to alleviate the complexity problem with respect to a full environ-
ment modelling.

From this fault-tree, instantiated properties in Prover iLock Verifier engine’s
internal language are manually extracted. In the course of the project two improve-
ments have been prototyped:

e A formalisation of fault-trees [13] which allows an automatic extraction of
these medium-level properties.

e A new type of generic graphs allowing the expression of safety properties.
Using such graphs would make it possible to automatically instantiate a
generic safety property on a particular track layout.

These two improvements have not yet been interconnected and this remains to
be done in order to fully automate the process of safety property expression (see
section 6).

4 Environment modelling

As we have seen in the previous section, the safety properties that we want to
prove aim at ensuring safe train traffic without any risk of accident (derailing,
collision). As stated in section 2.2, it is inconceivable to prove such properties if
the environment can change freely. So, we have to describe the behaviour of this
environment with respect to the different controls (outputs) sent to the environment
by the MEI: we have to specify that a point cannot move without being controlled
by the MEI, and that a train will not pass a signal with a restrictive indication.

As stated previously, environment modelling, i.e. the description of the
behaviour of the field equipment and the signalmen, has been guided by counter-
examples found by the proof engine. Indeed, our goal is to find the less constrained
environment that enables us to prove the safety properties. We will only discuss
here the environment modelling for points.

The MEI reads the position of a point by means of two sensors corresponding
to the right and left position of the point. The sensors are wired to the MEI’s /O
device by means of fail-safe relays. By fail-safe relay, we mean that if the MEI
detects, through its sensors, a point in a given position, it is guaranteed that this
point is really in this position. This behaviour is described in our model by the
following predicates:

MEI_SWgr = SWg A Sensorg

MEI_SW | = SW A Sensory,
These predicates mean that the MEI sees a point SW in the right position MEI_SWg
(resp. left position MEI_SW/) if the point is actually on the right SWg (resp. on the

left SW1) and if the sensor associated with this position Sensorg (resp. Sensory) is
not defective.
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The first constraint that we have written describes the fact that a point cannot be
in both positions at the same time.

We have then specified that a point cannot move without being controlled, i.e.
if a point is in a specific position in a given MEI execution cycle, and the MEI is
not controlling this point to the opposite position at that time, the point will stay in
this position in the next MEI cycle.

Other constraints, necessary to prove the safety of the application, specifies that
if a point s in a position in a given MEI execution cycle, it cannot be in the opposite
position in the next cycle. In other words, a point cannot move from a position to
the opposite during one MEI execution cycle. Considering MEI’s execution cycle
time and the time necessary for a point to physically move from one position to
the opposite, these constraints can be approved.

Failures of devices are handled by means of cancellation operations, performed
by the signalman, which override safety functions. For example, if, because of
the failure of the sensor of a point, the MEI doesn’t permit a route to be set, the
signalman can cancel the corresponding locking of the point and force the MEI to
set the route. In this case, the safety becomes the responsibility of the signalman.
The cancellation begins with a control sent to the MEI by the signalman, and must
be confirmed by the action of a second operator on a button placed on the track
near the point.

The cancellation operation has also been specified in our study by means of
constraints. Suppose that track_side_button represents the MEI’s input which is set
if the cancellation button is pressed. The constraint specifies that if the point is not
in the required position with respect to the route to be set, the cancellation button
must not be pressed, i.e. track_side_button can not be set. In other words, a human
failure resulting in a misunderstanding of the required position of the point may
cause a dangerous situation.

5 Proof certification

To enable the use of the proofs performed by Prover iLock Verifier as the safety
verification activity in the development of a SIL-4 safety critical software, it must
be guaranteed that the proofs are correct, i.e. the proof engine will not report a
property as valid if it can be falsified.

Prover Technology’s proof engines are made of a large number of complex
cooperating algorithms in constant evolution, and involves confidential intellec-
tual property. Furthermore the analysis of a system by the proof engine is a task
that involves heuristics and numerous try-and-fails before a proof is found. Taking
all of these parameters into account, attempts to verify the proof engine implemen-
tation would have been unreasonable.

The Proof Logging and Proof Checking mechanisms permit to overcome this
difficulty by saving the result of the proof search in a file (i.e. Proof Logging) and
having a simple software checking that this proof is correct (i.e. Proof Checking).

Prover Technology has extended its proof engine with the functionality of sav-
ing in a file the proof of a property when it has been found to hold. This proof

WIT Transactions on The Built Environment, Vol 103, © 2008 WIT Press
www.witpress.com, ISSN 1743-3509 (on-line)



150 Computers in Railways XI

log file includes two sections; the first section contains an encoding of the system
and the properties that were analysed, and the second section contains the proof
of each property expressed in terms of a deduction tree using a few generic infer-
ence rules. Such a proof brings the mathematical evidence that the property holds.
The Proof Log Checker takes as input the model of the system and its properties
together with the corresponding proof log, and checks that the proof log encodes
the correct system, and that the proofs of the properties are correct. It is important
to realise that, if finding the proof of a property is in general difficult, checking
its correctness is rather easy. The Proof Log Checker is thus a simple software
that can be thoroughly reviewed and verified. The review and verification process
of the Proof Log Checker has been defined based on the CENELEC EN 50128
standard [12] requirements for a safety critical software.

6 Conclusions and perspectives

We have presented in this paper the results of the PROOFER project. During this
project, a set of tools and methods dedicated to the formal verification of an inter-
locking system have been developed.

In order to verify that the software of the interlocking system does not allow
dangerous situation to happen, such as derailing and collision of trains, this formal
verification process involves 3 elements:

1. A formal model of the system obtained by translating a set of graphs imple-
menting the interlocking logic;

2. A set of safety properties obtained by refining high level properties into
medium level properties using a fault-tree formalism;

3. A model of the system’s environment obtained using proof results.

The methods and tools designed in the PROOFER project were applied to an
industrial interlocking system. These experiments allowed to demonstrate the fea-
sibility of this method and the capacity of the tools to handle industrial systems.

For the Paris metro line 3Bis, 11 generic properties have been defined: 5 to
prevent the derailing of a train and 6 to prevent the collision of two trains. These
generic properties have generated 124 instantiated safety properties that the system
must verify to meet its safety requirements. The proofs of these properties has been
conducted by TRSS thanks to the help of Télécom & Management SudParis and
RATP. The whole proof activity was supervised by RATP and supported by Prover
Technology and Verimag.

These results have encouraged RATP, TRSS and Prover Technology to pursue
their partnership in order to realise the formal verification of future PMI systems.
For this purpose, the tools will be improved and industrialised in order to:

e Automate the process as much as possible;
e Reduce the time of the translation of graphs (currently, for an average appli-
cation, the translation can take between a few hours to several days).

As stated previously, safety properties are manually defined based on an infor-
mal analysis performed by railway engineers on fault-trees describing high-level
safety properties. In [13], Verimag proposes a formal fault-tree formalism to auto-
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matically extract those safety properties. This is an improvement that could be
integrated into the existing methodology.

Currently, safety properties are expressed using temporal logic formulas (this
is a low-level input language of Prover iLock Verifier engine). Another change
being considered for future work is to express safety properties using the Petri Net
formalism of the applied graphs, to enable:

1. Using the same formalism for both design and safety properties;
2. Signalling and design engineers that are used to the formalism of the applied
graphs to develop the safety properties;
3. Using existing tools to perform the instantiation of generic safety properties
extracted from a fault-tree for a particular track layout.
Thus, it would ease the process of expressing the safety properties, giving a highly
automatic solution for the verification of interlocking systems.
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