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Abstract

Since the earliest days of railways, as traffic was increasing, there has been the
need for developing safety devices and procedures with the aim of avoiding or,
at least, minimising the likelihood of circulation hazards and their consequences.
In this framework, since railways are large and distributed transportation systems,
characterised by a high and heterogeneous technological level and by great infras-
tructure complexity, the problem of assessing the risk is very difficult to cope with.
Then, in this paper, the main characteristics of the SIGLO project, defining an anal-
ysis process assess risk is described.
Keywords: railway safety, risk analysis, Discrete Time Markov Chain.

1 Introduction

Since the earliest days of railways, as traffic was increasing, there has been the
need for developing safety devices and procedures with the aim of avoiding or, at
least, minimising the likelihood of circulation hazards and their consequences. In
this framework, in the last years the European Union (EU) has begun to address the
railways safety problem by promoting quantitative methodologies for safety level
evaluation, and by introducing ad-hoc norms (see, for instance [1] for a detailed
description of the point of view of the EU on the safety problem). Then, while
in the past the scope of reducing consequences of accidents has been achieved
by designing more robust rolling stocks, the challenge of minimising the accident
frequency has been mainly faced by continuously introducing new technological
devices and “behavioural norms” which ensure an high safety standard. In this

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Computers in Railways XI  123

doi:10.2495/CR080131



framework, since railways are large and distributed transportation systems, char-
acterised by a high and heterogeneous technological level and by great infrastruc-
ture complexity, the problem of assessing the risk is very difficult to cope with. In
effect, not only the failures of technological devices, but also human decisions and
the relevant errors have to be taken into account.

In this paper, to cope with this problem, the main characteristics of the SIGLO
(“SIcurezza GLObale”, meaning “Global Safety” in Italian) project are described.
In such a project, realised in collaboration between the Italian railway network
holder RFI (“Rete Ferroviaria Italiana”, meaning “Italian Railway Network”) and
SiConsulting, the proposal of an analytic methodology to represent, by means of
Behavioural Flowcharts (BF), the operations involved in train movement and man-
agement, and to assess the relevant hazards by means of Discrete Time Markov
Chains (DTMCs). In doing so, each state of the DTMC has been associated with
a set of state variables which allows to take into account the characteristics of the
trains, such as their speed, the characteristics of infrastructures and of train traffic,
that is, pointing out the technological level of the railway system and the trains
density. In addition, the interaction with the surrounding environment, such as the
influence of fog, rain, trees and bushes on signal visibility and so on, has been mod-
elled. As regards the “causes” of the transition between the states of the DTMC,
they have been represented by means of a probabilistic modeling approach which
takes into account the probability of human errors.

This paper is organised as follows: after a brief introduction of a brief refer-
ence taxonomy in Section 2, in Section 3.1 the main characteristics of SIGLO
are described. Then, in Section 3.2, the BF formalism is discussed. Therefore,
after having recalled the main properties of Discrete Time Markov Chains in Sec-
tion 5.1, in Section 5.2 the state-transition representation of a behavioural flowchart
is analysed. Finally, Section 6 is devoted to some summarising conclusions.

2 Reference taxonomy

In order to clarify the proposal of this paper, it is worth recalling the definitions,
hereafter considered:

Signal Passed At Danger (SPAD) is the term indicating a train passing a red sig-
nal or, more generally, a signal which does not give way to the train;

Dangers (D) represent attributes of processes which may potentially cause harm.
In railway systems dangers mainly consist of SPAD, that is signal passed
when on red;

Hazards (H) represent dangers that have a nature and magnitude that is directed
to objects, persons, assets, etc;

Risk (R) is intended as the measure, under uncertainties, for the severity of a haz-
ard. The risk is a function φ (to be determined) of undesired events or acci-
dents frequency f , and their relevant consequences C, i.e. R = φ(f,C).
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3 The SIGLO methodology

In this section, the main characteristics of SIGLO will be described. More particu-
larly, the attention will be focused on the project specifications, on the behavioural
flowcharts modelling formalism, and on the risk computing procedure.

3.1 The project specifications

As introduced above, the main aim of SIGLO is to provide a quantitative method-
ology for computing the safety risk related to train circulation taking into account
both the train and infrastructure safety devices, human actions, and possible human
errors.

In detail, the purpose of such a project is to provide a tool for:
1. Improving the accuracy in economic evaluation of timeslots in the timetable

of different lines;
2. Computing the risk of railway circulation, and thus evaluating the safety

level of railway lines due to their technological setup;
3. Demonstrating the adequacy of the implementation of different technolo-

gies, depending on the different circulation conditions and on the train fre-
quency;

4. Demonstrating the continuous improvement of railway safety.
In order to do so, a functional description is used for describing all the possible

operations that a railway system is able to do. Then, from this point of view, a
railway system may be defined at a general level as follows.
Definition 1. A railway system is a transportation system which realises the get-
ting on/off of passengers, the load/unload of freights and the relevant transporta-
tion by means of trains travelling on railways from an origin towards a destination
in an a-priori determined time interval, without “harming” them.

Therefore, in such a framework, any railway operation/function is characterised
by a sequence of:

actions, that is the behaviours followed by the human actors, or even by a techno-
logical devices fulfilling a-priori defined specific rules;

events, that is all the occurrences which do not depend directly on the actors’
actions, by might be a consequence of them.

Then, any function is modelled with the aim of pointing out the actor per-
forming actions or events, their sequence, their consequences, and the involved
tools or facilities. Moreover, the functional representation is able to show both the
events/actions trajectory or the state sequences Finally it is worth saying that the
considered functions have to be able to put in evidence the:

nominal behaviours, that is all the normal a-priori identified behaviours repre-
senting railway “physiological” operations;

degraded behaviours, that is all the “pathological” behaviours which are, any-
way, predictable and correctly managed by actors;
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faulty behaviours, that is all the “pathological” behaviours which may be unpre-
dictable or, even when predictable, not correctly managed by operators.

Finally, the proposed representation methodology has allow hierarchical rep-
resentation of the different functions, that is to be able to represent the railway
operations at any of the following levels of details:

Function level: This is the most general level, consisting of the function list;
System Level: At this level, the model of the different operations is derived with

a top-down process, that is regardless to the real implementation of railway
safety technological devices and norms;

Subsystem Level: At this level, the model of the different operations is derived
with a bottom-up process, that is starting from the real implementation of
railway safety technological devices and norms;

Application Level: This level is the application of the subsystem models to a par-
ticular case of analysis, consisting in the set of functions needful to perform
a specific “mission”, such as for instance the transportation of group of peo-
ple X from the origin A to the destination B.

3.2 Behavioural flowcharts

The above consideration on what a behavioural model should be able to manage,
leads to introduce flowcharts as the simplest representation of railway processes.
In fact, such a graphical and modular formalism, is sufficiently general to be able
to take into account all the elements and characteristics above described. More-
over, any flowchart process is built by means of blocks coming from a limited set,
without depending on the considered representation level. In facts, it is possible to
model any kind of railway process involving different actors, only by means of the
blocks representing a generic process (graphically depicted as a squared box) and
a decision (graphically depicted as a diamond box), respectively.

4 Flow-chart modelling a train approaching a signal

With the aim of clarifying the above introduced modelling approach, in this sec-
tion the flowchart representing the locomotive driver actions and behaviour is pre-
sented. In order to do so, consider the simple example of a train approaching a
red signal, which has not been passed by the train. The relevant signal layout, as it
normally is in Italian Railways, is depicted in Fig. 1.

In such a representation it is worth noting the red signal and the yellow “warn-
ing” signal announcing the red one. Then, in this case, due to the norms presently
in force in Italian Railways, the locomotive drivers, once having seen the yel-
low warning signal must start slowing down the train speed, in order to stop it
before the red signal. Note that, due to the low braking power of trains, when a
train approaches a red signal at a normal circulation speed Vnormal, the locomotive
drivers are normally not able to stop the train before the signal itself.
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Figure 1: Signal state in the considered example.

Figure 2: Flowchart representing a train approaching a red signal and the relevant
warning yellow signal.

Then, the relevant flowchart representing the possible actions of locomotive
drivers is depicted in Fig. 2.

In this model the final conditions consist of the safe behaviour or the unsafe
Signal Passed At Danger (SPAD) condition. More precisely, the final conditions
are given by the block:

9, which represents the worse SPAD occurrence, that is a SPAD characterised by
a signal passed at the train speed typical of the normal “free” circulation
Vnormal;

10, representing a SPAD, although the train passes the signal at the speed less the
one characterising the normal circulation Vnormal;

11, which represents the safe condition of red signal not passed.
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Figure 3: State-transition model of the behavioural flowchart of Fig. 2.

Once built the flowchart representation, the probability to reach the above men-
tioned states may be computed by building the relevant state-transition diagram,
as described in the next section.

4.1 State-transition representation of behavioural flowcharts

The above described flowcharts are not suitable for analytically computing the
probability of reaching an unsafe condition. To cope with this problem, a state-
transition diagram biunivocally corresponding to a behavioural flowchart. In effect,
although representing a discrete system by means of a such formalism is less
immediate with respect to the above mentioned sections, it allows one to easily
compute the probability of reaching some particular states. For a more detailed
description of the above mentioned formalism, the reader may refer to [2].

Then, consider the state-transition model of Fig. 3 representing the behavioural
flowchart of Fig. 2. In such a representation each state, depicted as an ellipse,
correspond to a block of the behavioural flowchart. Then, as regards the transitions
exiting from any state, they represent the action or error leading towards another
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state. In addition, each transition is associated with the probability of the relevant
action or error.

5 The hazard probability assessment

Once described a railway function as a state-diagram, the probability to reach a
particular state may be obtained by noting that it fulfils the Markov conditions.
Such a consideration, in fact, allows one to apply all the Markov Chains’ analytical
background and properties to compute the above mentioned probabilities.

In order to do so, in the next sections the basic definitions of such a formalism
are recalled and the probability to reach states 9, 10, and 11 of the flowchart of
Fig. 2 is then computed.

5.1 Basic on Discrete Time Markov Chain

In this section, Discrete Time Markov Chains are briefly recalled. DTMCs are
a graphical-analytical formalism for representing Discrete Event Systems (DES),
that is a class of systems characterised by a discrete state space and a set of admis-
sible events which drive the DES dynamics (see for instance [3] for details).

For what concerns the main definitions and properties of DTMCs, consider the
following definition.
Definition 2. Consider a DES S and its discrete state space X, dim(X) = m.
Then, let ξn = xn, xn ∈ X be the state of S after n events, that is after n state
changes. Then, S is a DTMC if and only if the probability of being in a generic
{ξn+1 = xn+1} after (n + 1) events fulfils the Markov property

P{ξn+1 = xn+1|ξi = xn|ξn−1 = xn−1| . . . |ξ0 = x0}
= P{ξn+1 = xn+1|ξn = xn}

i = 0, 1, 2, . . . (1)

indicating the probability that the state ξn+1 assumes a certain value xn+1 after
(n + 1) events depends only on the probability that S is in the state ξn = xn after
n, and not on the whole state trajectory x0 → x1 → . . . → xn. �

The second term of Eq. (1) is said one-step transition probability and may indi-
cated by

pi,j = P{ξn+1 = xi |ξn−1 = xj }, ∀xi, xj ∈ X.

Therefore, indicating with πi(n) = P{ξn = xi} the probability that S is in the
state ξn+1 = xi after (n + 1) events, and keeping in mind the total probability
equation, it is possible to state the relation

πi(n + 1) =
∑

j |xj ∈X

P{ξn+1 = xi |ξn = xj }P{ξn = xj }

=
∑

j |xj ∈X

pi,jP{ξn = xj }. (2)
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Finally, if π(n) (resp., π(n + 1)) is the vector gathering the probabilities πi(n)

(resp., πi(n + 1)), ∀i|xi ∈ X, it is possible to rewrite Eq. (2) as the vector

π(n + 1) = Pπ(n). (3)

being P the transition matrix

P =




p1,1 . . . p1,m

...
. . .

...

pm,1 . . . pm,m


 . (4)

Finally, by iteration the Eq. (6) it is possible to state the dynamic equation

π(n + 1) = Pnπ(0), (5)

where π(0) is the initial probability vector. Such a relation is particularly useful
for computing the probability of the final states, that is

π(∞) = lim
n→∞ Pnπ(0), (6)

5.2 DTMC model of behavioural flowchart

In this section, it is shown how to use DTMC for computing the hazard probability
introduced in Sec. 3.2. Then, in order to compute probability to reach an unsafe
state, the behavioural flowcharts have to be represented by a state-transition dia-
gram. In doing so, any element of the flowchart is transposed into a state, whereas
the arrows of the flowchart are transposed into transitions. As said, such a diagram
is, in effect, a DTMC fulfilling the property of Eq. (1), so that the above mentioned
probability can be computed by means of Eq. (3).

In such a DTMC, the probability error P(e) represent the probability that both
the locomotive drivers make an error at a time, that is

P(e) = P1(e) · P2(e) = 10−3 · 10−3 = 10−6, (7)

being Pi (e) = 10−3, i = 1, 2, the probability that a single locomotive driver
makes an error.

Therefore, the relevant transition matrix is

P =




0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 P(e) 0 0 0 0 0 0 0 0 0

0 0 P(e) 0 0 0 0 0 0 0 0

0 P(e) 0 0 0 0 0 0 0 0 0

0 0 0 0 P(e) 0 0 0 0 0 0

0 0 0 0 0 P(e) 0 0 0 0 0

0 0 0 0 P(e) 0 0 0 0 0 0

0 0 P(e) P(e) 0 0 0 P(e) 1 0 0

0 0 0 P(e) 0 P(e) P(e) P(e) 0 1 0

0 0 0 0 0 0 P(e) 0 0 0 1




,

where P(e) = 1 − P(e) is the probability that drivers make the right choice.
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By means of Eq. (3) it is easy to compute the probabilities

π9(∞) = 3 · 10−12

π10(∞) = 3.9999991 · 10−6

π11(∞) = 9.99996000006 · 10−1.

indicating that the hazard conditions characterised probability, whereas the proba-
bility to reach the safe state is

P(SPAD) = π9(∞) + π10(∞) � 4 · 10−6

P(saf e) = π11(∞) = 9.99996000006 · 10−1.

6 Conclusions

In this paper, the main characteristics and the aim of the SIGLO project have been
described. As said, such a project has developed a graphical/analytical tool, based
in flowchart and DTMC representation, for computing the hazard probabilities.
In effects, once computed these probabilities, SIGLO also provides the relevant
risk by taking into account, for instance, the frequency of trains on lines and other
relevant variables. Anyway, such aspects, which are based on “classical” event tree
analysis, have not been described here.
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