
From UML to B – a level crossing case study

J.-L. Boulanger1, P. Bon2 & G. Mariano2

1 Universite de Technologie de Compiegne, HEUDIASYC,
Compiegne cedex, France
2 INRETS, ESTAS, Villeneuve d’ascq, France

Abstract

The goal of this paper is to show how it is possible to combine the advantages
of Unified Modelling Language (UML) and of the B method in order to design
safety applications. We investigate how the Unified Modeling Langage (UML),
can be used to formally specify and verify critical railways systems. A benefit of
using UML is it status as an international standard (OMG) and its widespread use
in the software industry. B is a formal method for the incremental development of
specifications and their refinements down to an implementation. In the railway
critical software domain, safety requirements are obviously severe. It is very
important to keep requirements traceability during software development process
even if the different used models are informal, semi formal or formal.

1 Introduction

In spite of progress carried out in software development, designing a complex
system while respecting its safety requirements, remains very hard. During the
critical software development process, safety and security requirements must be
traced from informal specification to code generation. So we need to trace them
in the different models: informal, semi formal or formal ones. We present a new
method here to transform a semi formal modelling to a formal specification which
enables them to be traced. This method will be applied to a railways case study,
where safety requirements are very strict. We study a level crossing case study
taking into account French particularities. This article is made up 3 parts. Firstly,
we describe the case study. In the following part we present the principles of UML
and we give a part of semi formal modelling of the level crossing. In the last part

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 351

doi:10.2495/CR060351

Keywords: B method, formal development, level crossing, software verification.

we give a short presentation of the B method, and then we describe a part of the
formal model generation from the semi formal one.

2 The case study : level-crossing

To illustrate our approach, we will choose to design a level crossing. This example
is inspired by [8]. The term level crossing, in general a crossing at the same level,
i.e. without bridge or tunnel, is especially used in the case where a road crosses a
railway; it also applies when a light rail line with separate right-of-way crosses a
road; the term “metro” usually means by definition that there are no level crossings.
Firstly, a single-track line, which crosses a road in the same level, is modelled. The
crossing zone is named danger zone. The most important security rule is to avoid
collision by prohibiting road and railway traffic simultaneously on level crossing].
The railway crossing is equipped with barriers and road traffic lights to forbid
the car passage. Two sensors appear on the railroad to detect the beginning (train
entrance) and the end (train exit) of the level crossing protection procedure. The
level crossing is not in an urban zone this implies a sound signalisation. Traffic
lights consist of a single flashing red light. When they are switched off, road users
(drivers, pedestrians,) can cross. In the other case, the level crossing is closed and
railway traffic has priority. At any time, guards can control the level crossing. In
this case, the guards must do all they can to ensure the level crossing safety.

3 Semi-formal specification

3.1 UML

Born from the different object methods, like OMT or Booch & Jacobson, and
normalised by the Object Management Group, UML has now become a standard
to model systems. The UML notation makes it possible to model an application
according to an object view. 9 different diagram types make this modelisation.
Each diagram allows a particular view of the system. The reader interested by
more details in syntaxic and semantic aspects can refer to the reference guide of
UML [1]. Even if UML notation is a language in which models can be represented,
it does not define the making process of these models. Nevertheless, several
dedicated tools have strengthened the popularity of UML. These tools allow
graphic notation and partial generation of the associated code and documentations.
The UML notation is known by most computer scientists and is now used in several
domains. Using UML class diagrams to define information structures has now
become standard practice in industry. Recently, the critical application domains
have used the notation and several questions exist around this use. By providing
a rigorous semantic for a subset of UML and a systematic translation to the B
method, we aim to propose a method, called UML2B, for developing safety critical
system.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

352 Computers in Railways X

Figure 1: An usecase diagram.

3.2 Application

3.2.1 Environment and its interactions on the system
We describes the interaction between the physical environment and the level
crossing system by some usecase diagrams (see an example in figure 1). An
usecase diagram describes and traces the functional requirements of the system
and describe how the system can and will be used. The usecase diagram gives an
overview of the model. In UML, objects communicate with and send messages
to each other. We uses sequence diagram (see figure 2) to describe how objects
interact and communicate with each other. The focus is time.

3.2.2 Architecture of level crossing system
The level crossing system architecture is describe in the class diagram (see
figure 3), which describes the relationships between classes and shows the logical
view of a system (static view).

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 353

Figure 2: A sequence diagram.

Figure 3: Class diagram.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

354 Computers in Railways X

3.2.3 Behaviour
In the next part of the paper, among the different possible diagrams, we’ll use
the state diagrams particularly adapted to reactive system modelling. A state is a
condition in an object life while it satisfies some conditions, runs some actions
or waits for some events. There are two specials states: initial state and end state.
The Initial State is the state of an object before any transition. End States marks
the destruction of the object whose state we are modelling. An event is a particular
occurrence that can trigger a transition from a state to another one. A state diagram
can representing the system behaviour. This type of diagram represents finite state
automaton, under a graphical representation, linked by oriented arcs describing
transitions. Statechart diagrams [6, 7], also known as State diagrams, are used to
document the various modes (“state”) that a class can go through, and the events
that cause a state transition. The state-transitions graph formalism is not a UML
innovation. It has often been employed in other contexts and a large consensus,
from David Harel’s works, exists around this notation. It introduces the description
of possible sequences of states or actions which can occur to an element during its
life. Such sequences arise from element reaction to discrete events.

3.2.3.1 Level crossing control system. Gates, lights and bell are managed by
the level crossing control system (Figure 4). It will be activated as soon as a train
approach the level crossing. The activation is produced by the railway traffic. The
point, from which activation is produced, is called start of danger zone. A time
allowed is needed between the activation and the arrival of the fastest train into
the level crossing. This time, named train on line period, depends on maximal
train speed into the level crossing. The moment the control system is activated, a
sequence of orderly action is launched by the control system in order to empty the
level crossing in time and protect it from road traffic. First, the lights switch on
in order to stop the road traffic. At the same time, the bells ring (in a non urban
zone). After a notice time, the barriers pull down. If there is no problem during the
pulling down (i.e. pulling down made in the maximal temporal limits), the system
is in safe mode and the train will have the right to cross. After the train crossing,
the barrier pull up and the lights and bells switch off. The control system can at any
time go to manual mode. In this mode a guard manages the level crossing security.
This mode can be activating when a material problem occurs (no pulling down, no
light switch on,).

3.2.3.2 Embedded system. The embedded system runs several actions when
the train comes near a crossing level (Figure 5). When the train pass the start of
danger zone, the embedded system asks to the control system an acknowledgement
(ack), the embedded system gets into stand by and begin to brake in order to pull
down the barrier in time. After this notice time, the control system sends its state
to embedded one. If the level crossing is in safe mode, the embedded system stops
the braking and restarts with its initial speed. An end-crossing sensor detects the
train exit and starts the barrier pull up and the lights switch off.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 355

Figure 4: State transition diagram of level crossing control system.

4 Formal specification

4.1 The B method

The B method seems to be the most appreciated formal method in industrial
world for railway critical software development such METEOR (see [3] or [5]).
In fact, B method allows building a gate between mathematical modelling and
informatics realisation. The B method due to J.R Abrial [2] is a formal method
for the incremental development of specifications and their refinements down
to an implementation. It is a model-based approach similar to Z and VDM.
The B method covers all the software development process through a series
of proved refinement steps. The software design in B starts from mathematical
specifications(set description, first order logic and substitution). Little by little,
through many refinement steps [9], the designer tries to obtain a complete and
executable specification. This process must be monotonic, that is any refinement
has to be proved coherent according to the previous steps of refinement. The B

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

356 Computers in Railways X

Figure 5: Embedded system running.

method allows generating a secured and proved code from formal mathematical
expressions. The abstract machine is the basic element of a B development. It
encapsulates some state data and offers some operations. The B tool allows us to
generate automatically the proof obligations for each abstract machine. Generally
speaking, the proof obligations will be more and more complex as concrete details
are introduced. Then these proof obligation are discarded either automatically for
the simple ones or in cooperation with the designer for the complex ones. So, at
the last refinement called the implementation, we obtain a secure software which
does not need to be tested. At this low level stage, it may be easily translated
automatically to a programming language.

4.2 B specifications generated from UML diagrams

This section presents the B specification generated from UML diagram for
the Level Crossing problem. For space constraints, we do not describe all the
specifications. We fully presented the B specification generation processus in [4].

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 357

MACHINE TCS_LevelCrossingBehavior_0
SETS STATES ={Idle,SafeState,ActivateCrossingLevel,StandStill,

AbnormalTimingSafeState, AbnormalCrossingLevel}
CONCRETE_VARIABLES current_state
INVARIANT current_state : STATES
INITIALISATION current_state := Idle
OPERATIONS
change_state =
BEGIN
current_state :(
current_state :STATES
&((current_state$0= Idle)=>current_state:{ActivateCrossingLevel,Idle})
...
&((current_state$0= StandStill)

=> current_state/:{SafeState, AbnormalTimingSafeState})
)
END
END

The previous B abstract component, called TCS_LevelCrossingBehavior_0, we
introduced all states in set called STATES and an operation called “change_state”.
This abstract component is not deterministic since we use the operator list_var :
(predicate) in the OPERATION clauses. This operator indicates that the list of
variable become such that the predicate is true. In the next abstract machine,
we implemented the abstract component “TCS_LevelCrossingBehavior_n”. This
abstract machine introduces the dynamic of the state diagram.

IMPLEMENTATION TCS_LevelCrossingBehavior_n
REFINES TCS_LevelCrossingBehavior_0
INVARIANT (current_state = StandStill) => (brake = TRUE)

& (current_state /= StandStill) => (brake = FALSE)
INITIALISATION current_state := Idle
OPERATIONS
change_state =
CASE current_state OF

EITHER Idle THEN
VAR bb IN

bb <-- detectLevelCrossingSystem;
IF (bb = TRUE)
THEN
BEGIN current_state := ActivateCrossingLevel
; AskAcknowledgement
END
ELSIF (bb = FALSE)
THEN current_state := Idle
END

END
....
END
END

5 Conclusions

With these two main parts, Semi formal modelling with UML and formal
specification with B, this works show the first step that allow developing a
completely computerised level crossing. This application will be totally proved and
will guarantee an optimal safety. Of course the real development must be done, but

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

358 Computers in Railways X

with some add-on, the method presented here allow considering such development.
Such an example of future work, safety invariants can be derived from hazard
analysis and coded in UML by using OCL constraints attached to classes or sets
of associations to specify safety and operational invariants of reactive systems in
a concise manner. We will translate these UML constraints (OCL) into invariants
and control rules in the B model. The main difficulty to specify railway case study
is the less of harmonisation between the different European systems. The level
crossing modelling presented here give a first step to a computerised management
of level crossing.

References

[1] Unified modelling language version1.4. Technical report, OMG, 2001.
[2] Jean-Raymond Abrial. The B Book - Assigning Programs to Meanings.

Cambridge University Press, August 1996.
[3] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier.

METEOR : A successful application of B in a large project. In Proceedings of
FM’99: World Congress on Formal Methods, pages 369–387.

[4] Philippe Bon, Jean-Louis Boulanger, and Georges Mariano. Semi formal
modelling and formal specification: UML & B in simple railway application.
In CNAM-Paris, editor, ICSSEA 2003, December 2-4 2003.

[5] C. DaSilva, B. Dehbonei, and F. Mejia. Formal specification in the
development of industrial applications: The subway speed control mechanism,
1991.

[6] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–
530, 1988.

[7] David Harel and al. On the formal semantics of statecharts. In Proceedings of
the 2nd IEEE Symposium on Logic in Computer Science, pages 54–64. IEEE
Press, 1987.

[8] L. Jansen and Eckehard Schneider. Traffic control systems case study:
Problem description and a note on domain-based software specification.
Technical report, Institute of Control and Automation Engineering, Technical
UNIVERSITY of Braunschweig, 2000.

[9] C. Morgan. Deriving programs from specifications. Prentice Hall Interna-
tional, 1990.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 359

