
 

 

 
 

 

 

 

 

 Computers in Railways X   329 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

System-independent and quality tested  

availability of railway data across country and 

system borders by the model driven approach 

H. R. Gnägi1 & N. Stahel2 

1
ETH Zurich, Institute of Geodesy and PhotogrammetryIGP 

2
University of Zurich, Institute of Geography 

Abstract 

The model driven approach addresses tasks around (geo-) data services by first 

exactly describing the data to be treated on the system- and format-independent 

conceptual level. Various services can effectively be supported by the precise 

conceptual model. We will show how the automatic link to a standard transfer 

format allows system-independent railway data checking and the successful 

integration of differently structured track data. A conceptual model for the 

railway data corresponding to the XML-based transfer format railML© allows 

the comparison with the automatically generated XML-based model driven 

format. Different possibilities are presented to combine the two approaches for 
integrating railway data across system and country borders and providing a 

sustainable interoperability. 

Keywords:  Model driven approach, data integration, interoperability, railway 

data, transfer format, semantic transformation, railML©, UML, INTERLIS 

1 Introduction 

Our application of the model driven approach to railway data started in summer 

2003. The question was, if and how very differently structured administrative 

and commercial data from various systems could commonly be made available 

without changing the original systems. Especially needed was the link of these 

data with the track geometry. Hofmann [4] arrived to link CERES and DfA data 

and to provide a common visualisation. In the LINKOST project of Swiss 
Federal Railways SBB [2] and the GeoRail project of UIC [1] N. Stahel and H.R. 



 

 

 
 

 

 

 

 

330    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

Gnägi [7] provided a demonstrator extending Hofmann’s data hub. The possibi-

lity to inspect the data behind the graphical representation was added to the data 

hub in a client-server-environment. In the GeoRail project we have as well been 

confronted with the task to integrate German DB track data into the Swiss SBB 

system and vice versa given different coordinate systems, data structures and ex-
change formats on each side. Again the restriction had to be respected not to 

change any of the two given systems. The solution of this problem mainly on a 

system- and format-independent level will be treated in this paper (chapter 4). 

 

Data transfer using the model driven approach starts always with an analysis and 

a system- and format-independent exact description of the structure of the data to 

be transferred. This description is called conceptual data model or conceptual 

schema. The transfer format (description) can then automatically be derived from 

the conceptual schema according to rules – once fixed as standard – by a piece of 

software called compiler. We have therefore been interested to investigate the 

data structure behind railML©, an exchange format for railway data described by 
XML-schema. We provided a conceptual schema of this data structure and 

automatically derived an XML-transfer-format from it. We will report the results 

of the comparison of railML© with the automatically derived format (chapter 3). 

 

Chapter 2 gives a short introduction to the model driven approach (MDA) and its 

actual applications to railway problems, chapter 5 provides an overview of 

ongoing work and chapter 6 contains conclusions. 

 

2 The model driven approach (MDA) 

The model driven approach (MDA) together with semantic transformation 

applied to the exchange of differently structured data with the same content can 

shortly be described by the following four phases: 

(A) Before any data are reformatted or exchanged or treated by any other 

service, the structure of these data is exactly described on the system- and 

format-independent conceptual level. This description by a conceptual 

schema language is called data model or conceptual schema. A widely used 

graphical conceptual schema language (CSL) is the unified modelling 

language (UML). 
(B) From this conceptual schema, once tested for syntactical correctness by a 

compiler, can then automatically be calculated by the same compiler the 

description of the corresponding standard transfer format according to fixed 

rules (e.g. the description of an XML transfer format like railML© by the 

XML-schema language). 

(C) The data of the systems concerned are reformatted from the proprietary 

format of their systems to the standard format corresponding to their 

conceptual schema, done by a piece of software called 1:1-processor. This 

is a rather easy task, because the two formats correspond to the same data 

structure: The original format was the basis for the conceptual schema and 



 

 

 
 

 

 

 

 

 Computers in Railways X   331 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

from this conceptual schema the standard format has automatically been 

produced. 

(D) Given the conceptual schema and the data for the different systems, there 

exists a set of system-independent tools e.g. to automatically check the 

quality of the data (a checker can compare the data with the corresponding 
conceptual schema), for data transfer even between differently structured 

systems (by conversion systems allowing the mapping of data models and 

by existing 1:1 processors for different standard data formats) or – as side 

effect – for a well documented data save (data model plus data in corres-

ponding standard format) 

 

Phases (A) and (B) are part of the core of the MDA corresponding to the 

classical four shell modelling procedure of the data base design. From the 

description of the reality selection by natural language, taxonomies and thesauri 

(shell 1) is developed the conceptual schema (or conceptual model, shell 2, this 

is our phase A). The conceptual schema has to be transformed to the possibilities 
of an actual data base according to its logical elements, with the logical schema 

as result (or logical model, shell 3). In the case of data base or GIS generation, 

the physical level is normally no more described by a physical schema (or phy-

sical model, shell 4) but automatically implemented by the data base software 

given the logical schema. Quite different is the case of data exchange: There no 

logical schema is needed but a physical or format schema (or format model, shell 

4, our phase B) describing the transfer format. This format schema should 

automatically be derivable from the conceptual schema. 

 

Phase (C) builds the bridge between the given mostly proprietary format and the 

needed standard format for the starting data, and vice versa for the target data. 

 
Phase (D) allows – among others – the restructuring of data with the same 

content by mapping different conceptual schemas. We have used this option to 

integrate railway data. This so called semantic transformation needs not only the 

conceptual schemas of the data structures concerned and the mapping of them, 

but also the data in a standard format corresponding to the conceptual schemas. 

 

We are using the following tools and transfer formats in the four phases: 

(A) The conceptual schema languages UML (graphical, for overviews) and 

INTERLIS 2 (textual, object-oriented, for precising data types, constraints 

etc.), the UML-INTERLIS editor and the INTERLIS compiler [5] 

(B) In the railML© chapter 3 we use the format INTERLIS-XML. In the trans-
formation and transfer chapter 4 we use INTERLIS Transfer Format, ITF. 

The following format descriptions are automatically available from the 

INTERLIS compiler: 
 

Format Format Description Language 

INTERLIS Transfer Format ITF fmt-File (proprietary) 

INTERLIS XML XML-Schema 

GML (Geography Markup Language) XML-Schema 



 

 

 
 

 

 

 

 

332    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

(C) We had to write the 1:1 processors ourselves, because the very special rail-

way formats we had to deal with are not yet treated by standard software. 

(D) For semantic transformation we used the INTERLIS conversion system ICS. 

 

We will apply in chapter 3 the phases (A) and (B) to compare the manually deve-

loped XML-schema description of railML© with the XML-schema description 

automatically derived from a corresponding conceptual schema. In chapter 4 the 
whole scale of phases (A) to (D) will be used to exchange railway data. 

3 The railML© transfer format automatically generated 

from a conceptual model 

The initiative railML.org started in 2001 because of difficulties to link different 

railway software. railML© (railway markup language) is a common evolutionary 

project of railways, software and consulting enterprises as well as international 

research institutions. The Fraunhofer institute for traffic and infrastructure 

systems (IVI) in Dresden (Germany) is administrating and coordinating the 

partnership [6]. railML© is an XML-based exchange format, whose description 

(the physical or format schema, see chapter 2) is given in the description 

language XML-schema.  
 

<?xml version="1.0" encoding="UTF-8"?> 

..... 

  <!--railML: element definitions: --> 

  ...... 

  <!--Infrastructure: track data: --> 

  <xsd:complexType name="trackType"> 

    <xsd:sequence> 

      ..... 

      <xsd:element name="trackTopology" type="trackTopologyType"> 

      </xsd:element> 

      ..... 

    </xsd:sequence> 

    <xsd:attribute name="trackID" type="xsd:string" use="required"> 

    </xsd:attribute> 

    <xsd:attribute name="type" use="optional"> 

      <xsd:simpleType> 

        <xsd:restriction base="xsd:string"> 

          <xsd:enumeration value="mainTrack"/> 

          <xsd:enumeration value="secondaryTrack"/> 

          <xsd:enumeration value="connectingTrack"/> 

          <xsd:enumeration value="sidingTrack"/> 

          <xsd:enumeration value="stationTrack"/> 

        </xsd:restriction> 

      </xsd:simpleType> 

    </xsd:attribute> 

    <xsd:attribute name="mainDir" type="dirValidityType" use="optional"> 

    </xsd:attribute> 

    <xsd:attribute name="trackName" type="xsd:string" use="optional"> 
    </xsd:attribute> 

  </xsd:complexType> 

...... 

</xsd:schema> 
Figure 1: XML-schema of railML© 

 



 

 

 
 

 

 

 

 

 Computers in Railways X   333 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

From the point of view of the MDA this development is located in phase (B) and 

it would be interesting to have a conceptual description of the data “behind” the 

transfer format, as provided by phase (A). Therefore we started with the XML-

schema description of the format (see figure 1) on the basis of a data example 

(corresponding part of XML-data in figure 2). 
Analysing the XML-schema description of railML© and taking into account the 

data example, we have been able to get a graphical conceptual schema as UML-

diagram (see figure 3).  
 

 

<?xml version="1.0" encoding="UTF-8"?> 

<railml xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance  

 xmlns=www.railml.org/schema/infrastructure/v100  

 xsi:schemaLocation="http://www.railml.org/schema/infrastructure 

 /v100 infrastructure_v100.xsd"> 

  <infrastructure version="1.00"> 

    <lines> 

      ....... 

      <line lineID="DA" lineName="D-C-B-A"> 

        <infraAttrGroupID>1</infraAttrGroupID> 

        <lineDescr>Line D-C-B-A: Mainline</lineDescr> 

        <tracks> 

          ...... 

          <track trackID="D-1" type="stationTrack"  

           trackName="Station D; Stationtrack 1" mainDir="both"> 

            <trackDescr>Station D; Stationtrack 1</trackDescr> 

            <trackTopology> 

              <trackBegin> 

                <bufferStop elemID="StartTrackD-1" pos="0.000"  

                 absPos="84.250"/> 

              </trackBegin> 

              ........ 

              <crossSections> 

                <crossSection pos="0.125" absPos="84.125" ocpIDRef="D"  

                 ocpTrackID="1"/> 

              </crossSections> 

            </trackTopology> 

          </track> 

          ....... 

        </tracks> 

      </line> 

    </lines> 

  </infrastructure> 

</railml> 

 

Figure 2: RailML© data corresponding to the XML-schema of figure 1 
 

A main problem of this first part of phase (A) was to get an object-oriented 

overview of the heavily tagged and deeply nested XML-schema text. In the 

second part of phase (A) the INTERLIS-UML-editor provided automatically 

from the UML-diagram a skeleton of the corresponding textual conceptual 

schema in INTERLIS (2) CSL. We completed this draft INTERLIS schema by 
attribute types, especially by geometric ones, by value constraints etc. From this 

precise conceptual schema the INTERLIS compiler is able to automatically 

derive the description of a corresponding transfer format. In figure 5 is shown 

the part of the XML-schema description of the INTERLIS-XML format 

corresponding to the XML-schema of the railML© format of figure 1. 

 



 

 

 
 

 

 

 

 

334    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

 
 

Figure 3: Part of the graphical conceptual schema for railML© as UML-diagram 
 

 

 

 

 
INTERLIS 2.2; 

MODEL railML = 

!! Model corresponding to railML/infrastructure 

  DOMAIN 

    dirValidityType = (none, up, down, both, unknown); 

    ..... 

  TOPIC infrastructure = 

    ..... 

    STRUCTURE singleTrackData =  

      ..... 

      trackTopology: trackTopologyType;  

      ..... 

    END singleTrackData; 

    STRUCTURE trackType =  

      trackID: MANDATORY TEXT*20;    !!Unique track ID 

      type: (mainTrack,secondaryTrack,connectingTrack 

            ,sidingTrack,stationTrack); 

      trackName: TEXT*20; 

      mainDir: dirValidityType;      !!Main direction of mileage 

      singleTrack: singleTrackData;  

    END trackType; 

    ..... 

  END infrastructure; 

END railML. 

 

 

Figure 4: Part of the textual conceptual schema for railML© in INTERLIS (2) CSL 



 

 

 
 

 

 

 

 

 Computers in Railways X   335 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

 xmlns="http://www.interlis.ch/INTERLIS2.2" 

 targetNamespace="http://www.interlis.ch/INTERLIS2.2" 

 elementFormDefault="qualified" attributeFormDefault="unqualified"> 

..... 

 

    <xsd:complexType  name="railML.infrastructure.singleTrackData"> 

      <xsd:sequence> 

        .... 

        <xsd:element name="trackTopology" minOccurs="0"> 

          <xsd:complexType> 

            <xsd:sequence> 

              <xsd:element name="railML.infrastructure.trackTopologyType"  

               type="railML.infrastructure.trackTopologyType"/> 

            </xsd:sequence> 

          </xsd:complexType> 

        </xsd:element> 

        ..... 

      </xsd:sequence> 

    </xsd:complexType> 

    <xsd:complexType  name="railML.infrastructure.trackType"> 

      <xsd:sequence> 

        <xsd:element name="trackID"> 

          <xsd:simpleType> 

            <xsd:restriction base="xsd:string"> 

              <xsd:maxLength value="20"/> 

            </xsd:restriction> 

          </xsd:simpleType> 

        </xsd:element> 

        <xsd:element name="type" minOccurs="0"> 

          <xsd:simpleType> 

            <xsd:restriction base="xsd:string"> 

              <xsd:enumeration value="mainTrack"/> 

              <xsd:enumeration value="secondaryTrack"/> 

              <xsd:enumeration value="connectingTrack"/> 

              <xsd:enumeration value="sidingTrack"/> 

              <xsd:enumeration value="stationTrack"/> 

            </xsd:restriction> 

          </xsd:simpleType> 

        </xsd:element> 

        <xsd:element name="trackName" minOccurs="0"> 

          <xsd:simpleType> 

            <xsd:restriction base="xsd:string"> 

              <xsd:maxLength value="20"/> 

            </xsd:restriction> 

          </xsd:simpleType> 

        </xsd:element> 

        <xsd:element name="mainDir" type="railML.dirValidityType"  

         minOccurs="0"/> 

        <xsd:element name="singleTrack" minOccurs="0"> 

          <xsd:complexType> 

            <xsd:sequence> 

              <xsd:element name="railML.infrastructure.singleTrackData"  

               type="railML.infrastructure.singleTrackData"/> 

            </xsd:sequence> 

          </xsd:complexType> 

        </xsd:element> 

      </xsd:sequence> 

    </xsd:complexType> 

  </xsd:schema> 

 

Figure 5: XML-schema for the INTERLIS-XML transfer format 
corresponding to the XML-schema for railML© of figure 1 



 

 

 
 

 

 

 

 

336    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

Comparing the XML-schema automatically derived from the conceptual model 

and the original XML-schema, which was the basis for the definition of the 

conceptual model, we can remark the following issues: 

- The main structure of the two XML-schemas is in principle the same. 

- INTERLIS-XML uses mainly XML-elements to encode conceptual attributes 
whereas railML© works primarily with XML-attributes. XML-elements are 

easier extendible whereas XML-attributes could be faster treated. 

- In INTERLIS-XML all inherited elements are explicitly included in the 

specialised class whereas in railML© they are only cited by the keyword 

extension base. Because this citation possibility is not supported by all 

XML-tools, the designers of INTERLIS-XML decided to use the inclusion. 

- INTERLIS-XML uses at different places mininclusive/maxinclu-

sive value instead of total/fraction digits. This provides a 

more exact basis for range checks. 

- From the point of view of range checking maximal text lengths – as 

necessary for the actual INTERLIS version – are an advantage too.  

 

There exist several possibilities to overcome these differences between INTER-

LIS-XML and railML©. 

- A 1:1 processor railML© ↔ INTERLIS-XML can be developed. 
- The INTERLIS compiler can be completed: Beside the format descriptions 

for INTERLIS-XML, for ITF and for GML the XML-schema for railML© 

could as well be produced according to a given conceptual schema. 
- Finally the XML-schema of railML© can be described as exactly as possible 

on the conceptual level by UML/INTERLIS. The corresponding XML-

schema for INTERLIS-XML is automatically derived and used as new XML-

schema for a revised railML©. 

 

This shows that there exist different possibilities to open the door to the 

advantages of the model driven approach for the railML© initiative. 

4 Exchange of railway data across country borders 

One result of our demonstrator work in the GeoRail project was the restructuring 

of German (DB) track data to a (reduced) Swiss track data structure including the 

coordinate transformation to ETRS. Then we arrived to visualize the track 

geometry based on DB- and SBB-data at the border between Germany and 

Switzerland in the region of Schaffhausen ([1], chapter 5.9 to 5.11). For the 

graphic presentation in the GeoRail demonstrator it was sufficient to arrive at the 

same (simplified) presentation structure. Whereas for the data exchange it is 

necessary to exactly describe the start and the target data structure as well as the 

mapping between them. 

 

The detailed analysis of the German and the Swiss track data showed that in 
principle the tracks form a graph with nodes and edges. Now this graph and 

especially its edges can be defined in very different ways: 



 

 

 
 

 

 

 

 

 Computers in Railways X   337 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

- Either by a class of nodes of order 3 at least, i.e. with at least 3 edge-lines 

starting and/or ending at this node, and a class of edge-lines connecting 2 

nodes. The track elements of a certain connection type (straight line segment, 

circle arc, clothoid etc,) are integrated in the edge-lines. 

- Or the track-lines are “atomised” into track elements of a certain connection 
type (see before) and the edges are formed by the belonging track elements. 

The class of nodes contains then nodes of order 2 at least. 

- Or there is one class of nodes and the edges are distributed over different 

classes of track-lines and/or track-elements as described in the two other 

cases. 

- etc, 

We will now clarify the possibilities of data structure description (modelling) 

and data structure transformation (mapping) by looking at the first and the third 

of the track data models described above. The first is somehow a pure network 

model, will therefore be called “PureNet* and could possibly deserve as core of a 

UIC reference model. The third example provides as another model a relatively 
complex track element based model, therefore called “TrEl”, which is partly 

inspired by the actual German and Swiss track data. 

 
Figure 6: Conceptual schema TrEl as UML-Diagram 

 

Phase (A) of the MDA provides the two graphical conceptual schemas in UML 

as figure 6 and figure 7. The complexity of the TrEl model has to do with the 

fact that track lines are subdivided into ordinary track elements and into switch 

track elements. The ordinary track elements are linked by the start- and end-point 

associations to switch points. But the switch track elements are directly 



 

 

 
 

 

 

 

 

338    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

associated to the switches. A switch object itself is a composition of 3 or 4 

switch point objects (as can be seen in figure 6). Therefore it will not be easy to 

collect all track elements of a track line in the TrEl model. 

 
Figure 7: Conceptual schema PureNet as UML-Diagram 

 

The PureNet model on the other side is much simpler, because it consists only of 

the classes node and track. The nodes correspond to the (TrEl) switch points. The 
tracks are the glued collections of (TrEl) track elements (ordinary and switch 

ones) between two nodes described by the attribute trace, which is of type 

POLYLINE. Additional attributes have to be added in the PureNet classes to not 

loosing the switch track element properties of the TrEl model. 

 

The corresponding textual conceptual schemas are using the textual conceptual 

schema language INTERLIS 2. The precise specifications of the data types are 

now given for every attribute. In the two models we have two different types for 

modeling the same geometric property. For track elements (of ordinary and of 

switch type) the geometry is defined by the coordinates of the start point, the 

element length along the curve, the azimuth of the curve tangent in the starting 
point, the radius in the starting point and the radius in the end point. With 

PureNet the whole trace of a track is defined by the data type POLYLINE 

which has straight line segments, circle arcs, and clothoid segments (more types 

exist) as possible connection geometries of a single part (track element) of the 

whole track. 
 
  MAPPING MODEL TrEl2PureNet = 

    ... 

    TRANSFORMATION GROUP Group1 = 

      SOURCE { TrackLine, OrdTrackEl, ASSOCIATION LinEl} 

      TARGET { Track } 

      MAPPING { 

        RULE TrkLine2Trk { Track := TrackLine; } 

        RULE Glue { setPOLYLINE(LinEl, Track.trace); } } 

    END Group1; 

    ... 

  END TrEl2PureNet; 

Figure 8: Mapping two models 

 

In phase (D) the mapping from the TrEl model to the PureNet model has 

to be defined. Figure 8 shows one of different transformation groups as part of 

this mapping model. The two classes TrackLine and OrdTrackEl of the 

Model TrEl (see upper right part of figure 6) are transformed into one class 

Track of the model PureNet (on the right of figure 7). In the transforma-

tion group Group1, SOURCE defines the classes and associations of the 



 

 

 
 

 

 

 

 

 Computers in Railways X   339 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

 

source model TrEl used by this transformation group, and TARGET indica-

tes, that class Track of the target model PureNet will be produced. The 

keyword MAPPING initiates the list of rules defining the transformation. The 

RULE Trackline2Trk defines, that for each instance of the class 

TrackLine is produced an instance of class Track taking over attributes 

with same name and same data type (here no one). The second RULE Glue is 

the start of the general method setPOLYLINE taking into account all the 

OrdTrackEl objects linked to the actual TrackLine object by the associa-

tion LinEl to produce the POLYLINE-geometry of the attribute 

Track.trace. The INTERLIS-like definition language for map description 

used in figure 8 is actually under development (see also H.R. Gnägi, A. Morf, 

P.Staub [3]). The declarative definition of the maps will allow different 

techniques for the implementation. At the moment this mapping language needs 

to be translated into one of the implemented mapping systems mentioned in 

chapter 2 (like ICS or FME).  

 
As described in chapter 2 the semantic transformation defined above needs not 

only the conceptual schemata of the models in question and the mapping defini-

tion but in addition also the data to be transformed in a standard format corres-

ponding to the model. Because the selection of Swiss data we can use as example 

of the start model TrEl is in a special proprietary format, a special 1:1 proces-

sor had to be programmed in phase (C). Its result is used as input to the semantic 
transformation, whose output is again in the standard format. With a checker tool 

the result of the 1:1 processor as well as the result of the semantic transformation 

can be tested against the conceptual schema. With this quality checks the restruc-

turing process ends. It starts with the system TrEl and results in data accor-

ding to the system PureNet. The whole chain of system-neutral tools used 

without modification of the start and target GIS will be shown in a live presen-

tation at CompRail 2006. 

5 Further work 

The differences in the modelling principles of railML© (data type nesting) and 

of the MDA (class and association graph) need a deeper analysis. The linking 

possibilities between the two methods mentioned at the end of chapter 3 should 

be seriously compared to be able to evaluate, which strategy provides the optimal 

synergy effect with the minimal effort. By looking at the details of railML© we 

asked us the following question: Can the railML© data structure be simplified 

without loss of information? We would like to answer this question. To gain 

more experiences about methods and structures other railway application areas 

beside infrastructure will be treated with the MDA. Clearly there is an urgent 

need to implement the conceptual mapping language used in chapter 4. 



 

 

 
 

 

 

 

 

340    Computers in Railways X 

 WIT Transactions on The Built Environment, Vol88, © 2006 WIT Press 

 www.witpress.com, ISSN 1743-3509 (on-line) 

 doi: 10.2495/CR060331 

6 Conclusions 

We have presented two approaches to railway data and their exchange. On one 

side is the detailed collection of huge railway knowledge at the XML-format 

level by the railML© initiative. On the other side the system- and format-inde-

pendent model driven approach offers among others the obvious advantages of 

automatic quality testing and of easy data restructuring without need for system 

restructuring. A successful combination of the two methods is conceivable and 

seems to provide a solid basis for a sustainable interoperability and integrability 

of railway data across Europe. 

7 References 

[1] Engel, T., Barbu, G., Gnägi, H. R., Lahr, B., Müller, S., Robert, D., Stahel, 

N., Winter, P., Gleisbau und Gleisunterhalt auf der Basis absoluter 

Koordinaten. Schlussbericht des  UICProjektes  Georail. SBB, Bern, 

15.5.2005 

[2] Engel T.: Barbu, G., Gnägi, H. R., Winter, P., Georail, presentation, 

NAVSAT, Geneva Switzerland, 23rd June 2003. 

[3] Gnägi H.R., Morf A., Staub P., Semantic Interoperability through the 

Definition of Conceptual Model Transformations. Proc. of the 9th AGILE 

International Conference on Geographic Information Systems, to be 

published 2006. 

[4] Hofmann R.: Modellbasierte Datendrehscheibe für die SBB, Bericht 

Vertiefungsblock, ETH Zürich D-Baug IGP-GF, 2003 

[5] INTERLIS 2, reference manual, user manual, tools. www.interlis.ch  

[6] railML© initiative, www.railml.org  

[7] Stahel N., Gnägi H.R., Georail Demonstrator. Presentation, UIC-Georail-

Phase II: CNTD and ETRS, Workshop Paris, 15th September 2004 

 


