
Modeling a distributed railway interlocking
system with object-oriented Petri nets

X. Hei1, H. Mochizuki1, S. Takahashi1, H. Nakamura1, M. Fukuda2,
K. Iwata2 & K. Sato2
1College of Science and Technology, NIHON University, Japan
2Railway Technical Research Institute, Japan

Abstract

Great progress of distributed technology and intelligent terminals makes it
possible to develop a distributed railway interlocking system (DRIS). In this
paper, a modelling method of DRIS is presented by using G-nets, which are Petri
nets extended with object-oriented concepts. The modelling method improves
maintenance and reusability remarkably. Based on the models, the DRIS can be
implemented with an object-oriented language such as C++ or JAVA.
Keywords: distributed technology, railway interlocking system, G-nets, Petri net.

1 Introduction

Computerized interlocking system has been developed for many years [1].
Conventional interlocking system, which is named electronic interlocking
system, is composed of central control computer, electrical control part and
mechanical part. These systems feature that cost is high and updating of terminal
devices is inconvenient.

On the other hands, study and application of distributed control technology
and field-control technology have become a new stage [2, 3]. Especially, with
the development of ubiquitous technology [4], intelligent terminals or intelligent
devices have been possible. All these progress make it possible developing
distributed railway interlocking system (noted as DRIS).

In distributed interlocking system, all devices are intelligent, and they
communicate with each other directly without centralized interlocking computer,
as shown in figure 1. All these intelligent devices have functionality units which
are shown in figure 2. The logics of DRIS also become different from centralized
interlocking system.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 309

doi:10.2495/CR060311

 Logic Execution Unit

Control Unit

Communication Unit

Monitoring Unit

Figure 1: Distributed railway interlocking system (DRIS).

Figure 2: Components of intelligent devices.

DRIS is an autonomous decentralized and distributed real–time control
system. The complexity of such system requests new system modeling
techniques to support reliable, maintainable and extensible design.

At the same time, as the most important property of railway interlocking
system, fail-safe has to be assured. So the correctness verification of new logic
also needs a new modeling technique. Further, the dependability evaluation of
DRIS is based on a proper DRIS model, which can describe the DRIS model
precisely. Some efforts have been made for modeling the railway interlocking
system [6, 7]. But they did not either consider DRIS or establish a uniform and
hierarchical model.

In this paper, we proposed a hierarchical modeling method for DRIS with
G-nets [5] which is Petri net extended with object-oriented concepts.

The reason why we model DRIS based on G-nets is that our analysis of DRIS
is also based on object or class. Each device can be thought as an object, namely
an independent module. They have their own functions, and they communicate
with each other via some well-defined interfaces.

G-net is a modeling tool which is a Petri net extended with Object-oriented
concepts, namely, the object, with which the model of DRIS can be simplified

 Track Unit

 Signal
 Point

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

310 Computers in Railways X

evidently. An object packs many internal details of realization. To some extend,
G-nets can be thought as a high-level Petri net.

The analysis and evaluation of G-nets model can be converted to analysis and
evaluation of Petri nets, which have many available analysis methods and tools.

The paper is organized as follows: section 2 gives an overview of G-nets;
modeling approach of DRIS is presented in section 3, and a simple example of
station layout and its analysis are presented in section 4; finally, we conclude this
paper in section 6.

2 G-nets

G-net is a Petri net based on multi-level executable specification model which
incorporates the concepts of module and system structure [5, 6]. A G-nets system
comprises of a number of G-nets, each of which represents an independent
module. These modules communicate with each other through well-defined
interfaces, that is, the methods of G-nets.

Figure 3: Notations of a G-net.

A G-net is composed of two parts: a special place called Generic Switch Place
(GSP) and an Internal Structure (IS). The GSP provides the abstraction of the
module, and serves as the only interface between the G-net and other modules.
The IS, a modified Petri net, represents the detailed internal design and
realization of the module. The notation for G-nets is shown in figure 3.

The internal structure of the net(IS) is enclosed by a round corner rectangle.
The GSP is indicated by the ellipse in the left upper corner of the IS boundary.
The inscription GSP(net_name) defines the name of the net. The rounded corner
rectangle in the upper right corner of the IS boundary is used to identify the

GSP(net_name) <attribute_name>={<type>}
<method_name><description>={[<p1:description,

…, pn:description>](<sp>)}

Transition

Place Name
<arc expression>

isp(G’, mi)

Other elements of the
Internal Structure

Internal structure boundary Goal Place

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 311

methods and the attributes for the net, where: <attribute_name>={<type>}
defines the attributes for the net, < attribute_name > is the name of the
attributes, and <type> is a type for the attribute, restricted to the set of non
negative integers; <method_name> and <description> are the name and
description for the method respectively. <p1:description,…,pn:description> is a
list of arguments for the method, and (sp) is the name of the initial place for the
method. An ellipse in the internal structure represents an instantiated switch
place(isp), which is used to provide inter-G-Net communication, while a circle
represents a normal place. The inscription isp(G’,mi) indicates the invocation of
net G’ with method mi. Executing the isp primitive implies invoking G’(by
sending a token to G’) based on the specified methods. This token contains the
parameters needed to define the tokens for the initial marking of the invoked net.
A rectangle represents a transition that may have an inscription associated with
it. This inscription may be either an attribute or a firing restriction. A double
circle represents the termination place or goal place. Places and transitions are
connected through arcs that may carry an expression.

In the internal structure, places represent primitives, while transitions, together
with arcs, represent connections or relations among the primitives. A set of
special places called Goal Place represents the final state of the execution, and
the results (if any) to be returned.

From the description above, we can see that a G-net model essentially
represents a module or an object. A G-nets system supports incremental design
and successive modification. We find it suitable to model DRIS.

3 Modeling interlocking system

3.1 Function modules of intelligent devices

In DRIS, there are three kinds of intelligent devices: signal, point and track unit.
When a train is coming, a route will be set, related signals have to be locked in
some status, track units must be in some status and related points must be locked
in requested position. When all conditions of route setting are satisfied, the start
signal or home signal of the route changes to permission status, which indicates
the coming train can go on.

Corresponding with the components shown in figure 2, an intelligent device of
DRIS is composed of 4 functionality modules, which are listed in figure 4,
namely, the communication module, computing module, control module and
monitoring module. Communication module allows devices to communicate
with other intelligent devices or other system, such as ATS. Computing module
functions as logic computing and judgment, which decides whether the logic
status is correct or not, what status it should be, etc. Control module is in charge
of controlling actions of devices, such as changing status, locking or unlocking.
The monitoring module monitors the field device status by timely polling the
device and alarms when there is abnormal status.
 These modules are independent in structure and functionality, and they
coordinate with each other via some interfaces.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

312 Computers in Railways X

 Computing Module

Control Module

Communication Module

Monitoring Module

Figure 4: Modules of intelligent devices.

3.2 Modeling DRIS with G-nets

Because the communication, computing and control module of interlocking
devices are similar to each other, we introduce only these modules of signal and
the monitoring module of track unit. Figure 5 is G-net model of communication
module of signal. There are 3 methods: rm(receive message), sm(send message)
and rr(route request). The communication module of point and track unit has no
the rr(route request) method. In method sm and rm, the parameters are id and
data. Id represents network id of destination devices; and data represents
communication data, which maybe comprises of logic status information.
Parameter of method rr is rid, which indicates the id of requested route.

Figure 5: G-net representing communication module of signal.

GSP(S_Com)
sm: send message={[id:identifier,data:communication data](ISM)}

rm: receive message={[id:identifier,data:communication data](IRM)}

rr: route request={[rid:route id](IRR)}

IRR

isp(S_comp,rp)

GPRR

t8

t9

ISM

GPSM

t1

t2

Message
_Send

isp(S_Comp,lp)isp(S_Comp,rs)

IRM

GPRM

t4

t3

t6

t5

t7

If_is_
Ack

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 313

In figure 5, Message_Send and If_is_ack are primitives. They can be executed
without calling other methods. The return value of primitive If_is_ack is used to
judge whether the received message is an acknowledgment from other devices,
i.e. whether it is a response message or not. If it is an acknowledgment, then call
rs(means route setting) method of module S_Comp, which changes the signal to
permission status when all acknowledgments from route-related devices are
received. Otherwise, the received message must be an order that indicates what
status of signal should be. In this case, method lp(means logic process) of
module S_Comp is called.

Figure 6: G-net representing computing module of signal.

Figure 6 is G-net model of computing module. There are 4 methods in module
S_Comp. When signal receives route request via method rr of module S_Com,
method rp changes its status to route setting, and computes the status
information of other route-related devices, then send the result to these devices
by isp(S_com,send), which call send method of module S_Com. Method lp
executes logic processing. There are 2 circumstances that are considered when
receiving message, one is the logic status coming from network is the same as
current logic status (transition t6 is fired); the other one is different. In the second

IRP

isp(S_act,change)

GPRP

t1

t2

Route_
Computing

isp(S_com,send)

t4

t3

GSP(S_Comp)

lp: logic process={[data: received data](ILP)}
ack: acknowledge={[id: id of device, mark: locked or not](IACK)}
rp: route process={[rid: route id](IRP)}
rs: route setting={[id: id of device, mark: locked or not](IRS)}

IRS

GPRS

t13

t14

Checking_
all_Ack.

isp(S_act,change)

t15

isp(S_act,change)

ILP

GPLP

t5

t6 t7

t8

Logic_
Compare

isp(S_comp,ack)

t9

IACK

GPACK

t11

t10

Computing
Ack.

isp(S_com,send)

t12

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

314 Computers in Railways X

case, it is necessary to change logic status and lock it. Finally, devices
acknowledge a message by invoking method ack of module S_Comp to the
signal that starts route setting. The rs method starts when an acknowledgment is
received from other devices. When all responses are received and they satisfy the
requirements (primitive Checking_all_Ack checks the acknowledgment
message), signal change itself to permission (display green).

The computing module of point and track unit is different from that of signal.
They have no method rp(route process) and rs(route setting).

Figure 7 is G-net model of the control module which is named S_Act. In
module S_Act, there are 3 methods: change, lock and unlock. Method change
changes status of device; lock locks the logic status of device, such as locking
point on reverse or normal; unlock carries out unlocking action of device.

Figure 7: G-net representing control module of signal.

Figure 8 shows the monitor module of track unit. There are 3 methods in the

monitor module, namely, CheckTrain, NotifySignal and CheckPoint methods.
CheckTrain method checks the status of train(whether the train is on the track),
NotifySignal method sends train status to signal, and CheckPoint inspects the
status and position of point which is on some tracks.

These modules show the inter-module interface as well as internal realization
of the module. By introducing G-nets model with data domain, the system can be
represented evidently. The models can be used to develop DRIS system with any
object-oriented programming language, such as C++ or JAVA, etc.

GSP(S_Act)
change: change status={[id: identifier, sta: status](ICHG)}
lock: lock status={[id: identifier, sta: status](ILOCK)}
unlock: unlock={[id: identifier, sta: status](IUNL)}

IUNL

GPUNL

t7

t6

Status
_Unlock

ILOCK

GPLOCK

t4

t5

Status
_Lock

ICHG

GPCHG

t1

t2

Status
Change

isp(S_act.lock)

t3

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 315

Figure 8: G-net representing monitor module of track unit.

3.3 The model architecture of DRIS

The primitives, which are shown as a circle in the G-nets model of DRIS, can be
analyzed further. Thus a hierarchical Petri nets model with several levels can be
established until every possible state is represented.

With G-nets, the DRIS can be analyzed at any level, which makes the DRIS
G-net model to become a uniform model.

4 Analysis of a DRIS example

Figure 9 is an example of DRIS, which is used to describe the modeling
approach. There are 8 routes, 4 home signals, 4 start signals, 2 points and 2
platforms. Signal has 3 statuses: permission, refusal, and route setting. Table 1 is
interlocking information table which is related with route X→1.From figure 9,
we find that signal S1 is the home signal of route X→1, and when X→1 is
requested, signal S3 must be locked in refusal status.
 As a simple illustration, figure 10 shows the invocation process of signal S1
and signal S3 when route X→1 is requested. When X→1 is requested, the route
request is sent to signal S1. S1 changes its status to route setting, then searches
route related devices and computes what logic status the devices should be.
When the process is completed, signal S1 send the computing result to network.

GSP(T_Monitor)
NotifySignal: ={[tid: sig id, status: train status](NFS)}
CheckTrain ={[tid: train id, status: train status](CKT)}
CheckPoint:={[pid: point id, status: point status](CKP)}

CKT

GPCKT

t4

t5

Check_Train

NFS

GPNFS

t1

t2

Notify_Signal

isp(T_Monitor,CheckTrain)

t3

CKP

GPCKP

t6

t7

Check_Point

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

316 Computers in Railways X

Figure 9: Layout of interlocking example system.

Table 1: Interlocking information related with route X→1 in figure 9.

Route Signal display state Point state Related track unit
X-1 S1-G, S3-R, SS2-R P1-N, P2-R TX, TX1, T1

Figure 10: Invocation flow of signal S1 and S3 when X-1 is requested.

S1_Com

S1_Com.rr

S1_Com.sm

S1_Com.rm

S1_Act

S1_Act.change

S1_Act.lock

S1_Act.unlock

S1_Comp

S1_Comp.lp

S1_Comp.rp

S1_Comp.ack

S1_Comp.rs

S3_Comp

S3_Comp.lp

S3_Comp.rp

S3_Comp.ack

S3_Comp.rs

S3_Act

S3_Act.change

S3_Act.lock

S3_Act.unlock

S3_Com

S3_Com.rr

S3_Com.sm

S3_Com.rm

(4)

(3)

(2)(1)

(10)

(6)

(5)

(9)

(8)
(7)

(11)

(12)

Signal S1

Signal S3

P2
TY2 TY TX1 TX

Y X

T2

T1

P1

(1)

(2)

S1
S2

SS1

SS2

SSY
SSX

S3
S4

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X 317

 These steps are shown from step (1) to step (6). When signal S3 receives the
message from network, it analyzes the message and checks whether it is the
same as the current status or not. In figure 10, we assume they are the same, i.e.,
signal S3 is refusal status, so acknowledgment message is sent back to S1
directly. Step (7)→(10) shows this process.

When signal S1 receives the acknowledgments from all route-related devices
and if they satisfy the requirements, i.e., all conditions for signal S1 changing to
permission are achieved, signal S1 changes itself to permission status (display
green). Step (11) and step (12) describe this process.

Step (6) and step (10) represent the communication between signal S1 and S3,
which is accomplished by using a network.

Processes of other devices such as signal SS2, point P1 and P2 are similar to
process of signal S3.

5 Conclusion and discussion

The proposed approach can improve greatly the reusability of function module
when designing and realizing the system, and can simplify the complexity of
real-time control system when analyzing these systems.

In future research, the reliability of G-nets DRIS models will be analyzed with
Petri net tools and methods.

References

[1] K. Akita, T. Watanabe, H. Nakamura, I. Okumura: “Computerized
Interlocking System for Railway Signaling Control; SMILE”, IEEE Trans.,
Ind., 1A-21, May 1985.

[2] Heck, B. Wills, L. and Vachtevanos G. “Software Technology for
Implementing Reusable, Distributed Control. Systems”, IEEE Control
Systems Magazine, February 2003.

[3] C. Engelmann, S. L. Scott and G. A. Geist. "High Availability through
Distributed Control". Proceedings of High Availability and Performance
Computing Workshop (HAPCW), Santa Fe, NM, USA, October 2004.

[4] M. Weiser and J. Brown, “Designing Calm Technology,” PowerGrid J., vol.
1, 1996.

[5] Y. Deng, S. Chang, A. Perkusich and J. de Figueiredo, “Integrating Software
Engineering Methods and Petri Nets for the Specification and Analysis of
Complex Information Systems”. Proc. Of The 14th International
Conference on Application and Theory of Petri Nets, Chicago, June 21-25,
1993, pages 206-223.

[6] J. de Figueiredo and A. Perkusich, “Distributed Control of Track-Vehicle
System with Fault-Tolerant Characteristics: a Petri Net Based Approach”,
Proc. of the IEEE international conference on Systems, Man, and
Cybernetics, paginas,377-382,Vancouver, Canada, 1995

[7] V. Hartonas-Garmhausen, “Verification of a safety-critical railway
interlocking system with real-time constraints”, Proc. of 28th Annual Int.
Symposium on Fault-Tolerant Computing, p.458, June 23-25, 1998.

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 88,

318 Computers in Railways X

