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Abstract 

Great progress of distributed technology and intelligent terminals makes it 
possible to develop a distributed railway interlocking system (DRIS). In this 
paper, a modelling method of DRIS is presented by using G-nets, which are Petri 
nets extended with object-oriented concepts. The modelling method improves 
maintenance and reusability remarkably. Based on the models, the DRIS can be 
implemented with an object-oriented language such as C++ or JAVA. 
Keywords: distributed technology, railway interlocking system, G-nets, Petri net. 

1 Introduction 

Computerized interlocking system has been developed for many years [1]. 
Conventional interlocking system, which is named electronic interlocking 
system, is composed of central control computer, electrical control part and 
mechanical part. These systems feature that cost is high and updating of terminal 
devices is inconvenient. 

On the other hands, study and application of distributed control technology 
and field-control technology have become a new stage [2, 3]. Especially, with 
the development of ubiquitous technology [4], intelligent terminals or intelligent 
devices have been possible. All these progress make it possible developing 
distributed railway interlocking system (noted as DRIS). 

In distributed interlocking system, all devices are intelligent, and they 
communicate with each other directly without centralized interlocking computer, 
as shown in figure 1. All these intelligent devices have functionality units which 
are shown in figure 2. The logics of DRIS also become different from centralized 
interlocking system. 
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Figure 1: Distributed railway interlocking system (DRIS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Components of intelligent devices. 

DRIS is an autonomous decentralized and distributed real–time control 
system. The complexity of such system requests new system modeling 
techniques to support reliable, maintainable and extensible design.  

At the same time, as the most important property of railway interlocking 
system, fail-safe has to be assured. So the correctness verification of new logic 
also needs a new modeling technique. Further, the dependability evaluation of 
DRIS is based on a proper DRIS model, which can describe the DRIS model 
precisely. Some efforts have been made for modeling the railway interlocking 
system [6, 7]. But they did not either consider DRIS or establish a uniform and 
hierarchical model. 

In this paper, we proposed a hierarchical modeling method for DRIS with      
G-nets [5] which is Petri net extended with object-oriented concepts. 

The reason why we model DRIS based on G-nets is that our analysis of DRIS 
is also based on object or class. Each device can be thought as an object, namely 
an independent module. They have their own functions, and they communicate 
with each other via some well-defined interfaces. 

G-net is a modeling tool which is a Petri net extended with Object-oriented 
concepts, namely, the object, with which the model of DRIS can be simplified 
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evidently. An object packs many internal details of realization. To some extend, 
G-nets can be thought as a high-level Petri net. 

The analysis and evaluation of G-nets model can be converted to analysis and 
evaluation of Petri nets, which have many available analysis methods and tools. 

The paper is organized as follows: section 2 gives an overview of G-nets; 
modeling approach of DRIS is presented in section 3, and a simple example of 
station layout and its analysis are presented in section 4; finally, we conclude this 
paper in section 6. 

2 G-nets 

G-net is a Petri net based on multi-level executable specification model which 
incorporates the concepts of module and system structure [5, 6]. A G-nets system 
comprises of a number of G-nets, each of which represents an independent 
module. These modules communicate with each other through well-defined 
interfaces, that is, the methods of G-nets. 

Figure 3: Notations of a G-net. 

A G-net is composed of two parts: a special place called Generic Switch Place 
(GSP) and an Internal Structure (IS). The GSP provides the abstraction of the 
module, and serves as the only interface between the G-net and other modules. 
The IS, a modified Petri net, represents the detailed internal design and 
realization of the module. The notation for G-nets is shown in figure 3. 

The internal structure of the net(IS) is enclosed by a round corner rectangle. 
The GSP is indicated by the ellipse in the left upper corner of the IS boundary. 
The inscription GSP(net_name) defines the name of the net. The rounded corner 
rectangle in the upper right corner of the IS boundary is used to identify the 
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methods and the attributes for the net, where: <attribute_name>={<type>} 
defines the attributes for the net, < attribute_name > is the name of the 
attributes, and <type> is a type for the attribute, restricted to the set of non 
negative integers; <method_name> and <description> are the name and 
description for the method respectively. <p1:description,…,pn:description> is a 
list of arguments for the method, and (sp) is the name of the initial place for the 
method. An ellipse in the internal structure represents an instantiated switch 
place(isp), which is used to provide inter-G-Net communication, while a circle 
represents a normal place. The inscription isp(G’,mi) indicates the invocation of 
net G’ with method mi. Executing the isp primitive implies invoking G’(by 
sending a token to G’) based on the specified methods. This token contains the 
parameters needed to define the tokens for the initial marking of the invoked net. 
A rectangle represents a transition that may have an inscription associated with 
it. This inscription may be either an attribute or a firing restriction. A double 
circle represents the termination place or goal place. Places and transitions are 
connected through arcs that may carry an expression. 

In the internal structure, places represent primitives, while transitions, together 
with arcs, represent connections or relations among the primitives. A set of 
special places called Goal Place represents the final state of the execution, and 
the results (if any) to be returned.  

From the description above, we can see that a G-net model essentially 
represents a module or an object. A G-nets system supports incremental design 
and successive modification. We find it suitable to model DRIS. 

3 Modeling interlocking system 

3.1 Function modules of intelligent devices 

In DRIS, there are three kinds of intelligent devices: signal, point and track unit. 
When a train is coming, a route will be set, related signals have to be locked in 
some status, track units must be in some status and related points must be locked 
in requested position. When all conditions of route setting are satisfied, the start 
signal or home signal of the route changes to permission status, which indicates 
the coming train can go on. 

Corresponding with the components shown in figure 2, an intelligent device of 
DRIS is composed of 4 functionality modules, which are listed in figure 4, 
namely, the communication module, computing module, control module and 
monitoring module. Communication module allows devices to communicate 
with other intelligent devices or other system, such as ATS. Computing module 
functions as logic computing and judgment, which decides whether the logic 
status is correct or not, what status it should be, etc. Control module is in charge 
of controlling actions of devices, such as changing status, locking or unlocking. 
The monitoring module monitors the field device status by timely polling the 
device and alarms when there is abnormal status.  
     These modules are independent in structure and functionality, and they 
coordinate with each other via some interfaces. 
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Figure 4: Modules of intelligent devices. 

3.2 Modeling DRIS with G-nets 

Because the communication, computing and control module of interlocking 
devices are similar to each other, we introduce only these modules of signal and 
the monitoring module of track unit. Figure 5 is G-net model of communication 
module of signal. There are 3 methods: rm(receive message), sm(send message) 
and rr(route request). The communication module of point and track unit has no 
the rr(route request) method. In method sm and rm, the parameters are id and 
data. Id represents network id of destination devices; and data represents 
communication data, which maybe comprises of logic status information. 
Parameter of method rr is rid, which indicates the id of requested route. 

 

Figure 5: G-net representing communication module of signal. 

GSP(S_Com) 
sm: send message={[id:identifier,data:communication data](ISM)} 

rm: receive message={[id:identifier,data:communication data](IRM)} 

rr: route request={[rid:route id](IRR)} 

IRR 
 

isp(S_comp,rp) 
 

GPRR 

t8

t9 

ISM 

GPSM 
 

t1 

t2

Message 
_Send 

isp(S_Comp,lp)isp(S_Comp,rs)

IRM 

GPRM 

t4 

t3

t6 

t5 

t7 

If_is_ 
Ack 

 © 2006 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 88,

Computers in Railways X  313



In figure 5, Message_Send and If_is_ack are primitives. They can be executed 
without calling other methods. The return value of primitive If_is_ack is used to 
judge whether the received message is an acknowledgment from other devices, 
i.e. whether it is a response message or not. If it is an acknowledgment, then call 
rs(means route setting) method of module S_Comp, which changes the signal to 
permission status when all acknowledgments from route-related devices are 
received. Otherwise, the received message must be an order that indicates what 
status of signal should be. In this case, method lp(means logic process) of 
module S_Comp is called. 

Figure 6: G-net representing computing module of signal. 

Figure 6 is G-net model of computing module. There are 4 methods in module 
S_Comp. When signal receives route request via method rr of module S_Com, 
method rp changes its status to route setting, and computes the status 
information of other route-related devices, then send the result to these devices 
by isp(S_com,send), which call send method of module S_Com. Method lp 
executes logic processing. There are 2 circumstances that are considered when 
receiving message, one is the logic status coming from network is the same as 
current logic status (transition t6 is fired); the other one is different. In the second 
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case, it is necessary to change logic status and lock it. Finally, devices 
acknowledge a message by invoking method ack of module S_Comp to the 
signal that starts route setting. The rs method starts when an acknowledgment is 
received from other devices. When all responses are received and they satisfy the 
requirements   (primitive Checking_all_Ack checks the acknowledgment 
message), signal change itself to permission (display green). 

The computing module of point and track unit is different from that of signal. 
They have no method rp(route process) and rs(route setting). 

Figure 7 is G-net model of the control module which is named S_Act. In 
module S_Act, there are 3 methods: change, lock and unlock. Method change 
changes status of device; lock locks the logic status of device, such as locking 
point on reverse or normal; unlock carries out unlocking action of device. 

Figure 7: G-net representing control module of signal. 

 
Figure 8 shows the monitor module of track unit. There are 3 methods in the 

monitor module, namely, CheckTrain, NotifySignal and CheckPoint methods. 
CheckTrain method checks the status of train(whether the train is on the track), 
NotifySignal method sends train status to signal, and CheckPoint inspects the 
status and position of point which is on some tracks. 

These modules show the inter-module interface as well as internal realization 
of the module. By introducing G-nets model with data domain, the system can be 
represented evidently. The models can be used to develop DRIS system with any 
object-oriented programming language, such as C++ or JAVA, etc. 
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Figure 8:  G-net representing monitor module of track unit. 

3.3 The model architecture of DRIS 

The primitives, which are shown as a circle in the G-nets model of DRIS, can be 
analyzed further. Thus a hierarchical Petri nets model with several levels can be 
established until every possible state is represented. 

With G-nets, the DRIS can be analyzed at any level, which makes the DRIS 
G-net model to become a uniform model.  

4 Analysis of a DRIS example 

Figure 9 is an example of DRIS, which is used to describe the modeling 
approach. There are 8 routes, 4 home signals, 4 start signals, 2 points and 2 
platforms. Signal has 3 statuses: permission, refusal, and route setting. Table 1 is 
interlocking information table which is related with route X→1.From figure 9, 
we find that signal S1 is the home signal of route X→1, and when X→1 is 
requested, signal S3 must be locked in refusal status. 
     As a simple illustration, figure 10 shows the invocation process of signal S1 
and signal S3 when route X→1 is requested. When X→1 is requested, the route 
request is sent to signal S1. S1 changes its status to route setting, then searches 
route related devices and computes what logic status the devices should be. 
When the process is completed, signal S1 send the computing result to network. 
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Figure 9: Layout of interlocking example system. 

Table 1:  Interlocking information related with route X→1 in figure 9. 

Route Signal display state Point state Related track unit 
X-1 S1-G, S3-R, SS2-R P1-N, P2-R TX, TX1, T1 

 

 

Figure 10: Invocation flow of signal S1 and S3 when X-1 is requested. 
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     These steps are shown from step (1) to step (6). When signal S3 receives the 
message from network, it analyzes the message and checks whether it is the 
same as the current status or not. In figure 10, we assume they are the same, i.e., 
signal S3 is refusal status, so acknowledgment message is sent back to S1 
directly. Step (7)→(10) shows this process. 

When signal S1 receives the acknowledgments from all route-related devices 
and if they satisfy the requirements, i.e., all conditions for signal S1 changing to 
permission are achieved, signal S1 changes itself to permission status (display 
green). Step (11) and step (12) describe this process. 

Step (6) and step (10) represent the communication between signal S1 and S3, 
which is accomplished by using a network.  

Processes of other devices such as signal SS2, point P1 and P2 are similar to 
process of signal S3. 

5 Conclusion and discussion 

The proposed approach can improve greatly the reusability of function module 
when designing and realizing the system, and can simplify the complexity of 
real-time control system when analyzing these systems.  

In future research, the reliability of G-nets DRIS models will be analyzed with 
Petri net tools and methods. 
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