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Abstract

Mean daily significant wave height time series are analysed by means of the
detrended fluctuation analysis (DFA) method to examine the existence of long-
range correlations, or long memory. The results indicate that the scaling behavior
of significant wave height fluctuations is not constant over the considered time
scales but there is a decrease of the scaling exponent with increasing time
scale. Two crossover times have been identified, indicating three different scaling
behaviors. Fluctuations associated to time scales between 10 and 100 days,
approximately, show long-range correlation while fluctuations above and below
this range present white and Brownian noise-like behavior, respectively.

1 Introduction

The knowledge of sea state conditions is critical not only for studying many
oceanic and atmospheric processes but also for many offshore and nearshore
operations. The evolution of sea state conditions is also of utmost importance in
coastal erosion, several questions concerning safety, reliability and feasibility of
offshore activities, as well as in maritime transport.

It has been highlighted by many researchers [1, 2] that the design and
construction of marine structures and the coastal and offshore development
activities require a relatively accurate knowledge of wave conditions to be expected
during those activities and the expected lifetime of the structures. However,
acquiring accurate knowledge of wave conditions evolution proves to be a difficult
task. Ocean wind waves are generated in the interface connecting the turbulent
boundary layers of air and water. The coupling of these two different viscous
fluids is strong and nonlinear. Waves are inherently forced by the wind, break
intermittently and interact strongly with surrounding turbulence. Moreover, in
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a given sea surface area, apart from an actively wind driven wave field, there
may be one or more wave fields that have been generated elsewhere in the past
and propagated toward this zone. These different wave fields interact through
nonlinear interactions. As a result, in general, wind-generated waves are non-
stationary, irregular and highly nonlinear, representing a process with a highly
complex dynamics [3].

Many natural phenomena can be described as stochastic processes. A key
feature of this type of process is the correlation time or scale, characterized by
the autocorrelation function, involving either long range or short range correlation
characteristics. The autocorrelation function decay for a long range correlated
process lacks a characteristic time. In fact, the de-correlation time is infinite. On the
other hand, short range correlation processes decay is described by an exponential
function and therefore they exhibit finite time scales. Although, in recent years,
several studies have shown that many complex natural systems, including hydro-
meteorological processes, are characterized by long-range correlations [4, 5], a
standard assumption of time series analysis is that observations separated by a
large time span are roughly independent. However, for processes with long-range
dependence, these observations are not independent.

Experimental data are often affected by non-stationarities, i.e. varying mean
and standard deviation. These effects have to be well distinguished from the
intrinsic fluctuations and correlations of the system in order to find the correct
scaling behavior. Sometimes, type and reasons for underlying non-stationarities in
collected data are not known [6]. Furthermore, it is difficult to identify and quantify
long-range correlations using traditional tools like the autocorrelation function or
power spectrum, partly because of the nonstationarity of the signal.

In this context, long-term time series of significant wave height (the parameter
most frequently used to describe wave conditions) exhibit a number of features,
namely random variability, serial correlation, seasonal periodicity, nonstationarity,
and, possibly, long-term trends, evolving over different time scales. If there is long
range dependence in significant wave height time series then forecasts in the long
term, as well as the knowledge on the physics underlying the observed dynamical
processes, could improve.

The key objective of this paper is to analyze significant wave height time
series over a range of temporal scales to identify the possible existence of long-
range correlations. For this, the detrended fluctuation analysis(DFA) technique is
used, because it permits the detection of long-range correlations embedded in a
seemingly nonstationary time series and also avoids the spurious results that are
possibly caused by nonstationarity.

The rest of the paper is structured as follows. Section 2 describes some
characteristics of the wave data used and introduces the detrended fluctuation
methodology applied for detecting scaling properties in wave time series. Section 3
deals with a summary and discussion of results obtained. Conclusions are
presented in Section 4.
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2 Data and analysis methods

2.1 Significant wave height data

Wave conditions during a sea state can be properly characterised by the directional
spectral density. However, the parameter most frequently used to describe a sea
state is the significant wave height, defined as the average of the highest one-
third of wave heights in a record or in terms of the spectral density function, as
four times the square root of the zero order moment of the wave spectrum. These
definitions are equivalent for seas with narrow band spectra.

Significant wave height data used in this paper have been provided by Puertos
del Estado. Wave data were recorded during 12 years (from 1998 to 2009) using
a SeaWatch directional waverider buoy placed at 382 m water depth, off Estaca
de Bares Cape (Coruña), north-west of Spain. Wave data were recorded with 2 Hz
sampling frequency during a period of 30 minutes, approximately, for each hour.
These data were used to compute the wave spectrum and the significant wave
height, as well as other spectral wave parameters. Estimated significant wave
heights have been averaged to obtain a mean daily value.

One of the main obstacles in analysing long time series of significant wave
height, as in almost any environmental application, is that usually datasets
measured in nature are incomplete due to a number of reasons, such as interruption
of measurements due to instrument failure or maintenance, accidental loss of
data, or discard of erroneous measurements. A logical approach to alleviate this
inconvenient is to use some of the various methods suggested for filling gaps
in time series. Unfortunately, this type of approach is not free of problems.
Chen et al. [6] observed that removing segments from a signal and stitching
together the remaining parts does not affect the scaling behavior of positively
correlated signals, even when up to 50% of the points are removed. Thus, stitching
together segments of data obtained from discontinuous experimental recordings,
or removing some noisy and unreliable parts from continuous recordings and
stitching together the remaining parts has become a procedure commonly used
in preparing data for scaling analysis and is the approach used in this study.

2.2 Detrended fluctuation analysis

The Detrended Fluctuation Analysis (DFA) technique was introduced by Peng
et al. [7, 8] to investigate long-range power-law correlations along DNA sequences.
The key advantages of the DFA over conventional methods are its ability to detect
long-range correlations embedded in a seemingly non stationary time series, and
also to avoid the spurious detection of apparent long-range correlations that are an
artifact of nonstationarity. Thus, DFA has been established as an important method
to reliably detect long-range correlations in data affected by trends.

Briefly, the detrended fluctuation analysis of a time series can be described as
follows. Given a time series {x(i)} with N values taken at equidistant intervals, a
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new time series {y(k)} is obtained by estimating its average value,

x̄ =
N∑

i=1

x(i) (1)

and integrating the original time series,

y(k) =
k∑

i=1

(x(i) − x̄) (2)

Next, the integrated time series of length N is divided into Nb = N/n
nonoverlapping boxes, each containing n data points. Then, the local trend within
each box is estimated by fitting an adequate function, yp(k), to the segment. The
local trend in each box is commonly defined as the ordinate of a linear least-square
fit of the data points in that box,

yp(k) = ak + b (3)

Thus, the possible influence of linear trends on scales larger than the segment
are eliminated by subtracting yp(k) from the integrated time series in each box.
However, it is interesting to remark that the use of other detrending functions may
improve the accuracy of the DFA technique by removing higher order trends [9].
In this sense, the DFA method is conventionally denoted as DFA−q, with the index
q denoting the order of the polynomial function used to characterise the local trend
(DFA1, DFA2,. . .). In the DFA−q approach, the influence of possible (q − 1)th-
order trends on scales larger than the segment size are removed by subtracting the
best qth-order polynomial fit from the integrated time series, y(k)− yp(k), in each
box.

The root-mean-square values of the integrated and detrended signal are
calculated for each segment of length n to yield the detrended fluctuation function,

Fr(n) =
[

1
n

rn∑
k=(r−1)n+1

|y(k) − yp(k)|2
]1/2

, r = 1, 2, . . . , Nb (4)

Averaging Fr(n) over the Nb intervals gives the mean value of the fluctuation
function for a given subseries length n,

〈F (n)〉 =
1

Nb

Nb∑
r=1

Fr(n) (5)

This computation is repeated over many time scales (box sizes) to provide a
relationship between 〈F (n)〉, and the segment length n. Typically 〈F (n)〉 will
increase with box size n.
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A linear relation between log F (n) versus log n indicates the presence of
scaling, which can be characterised by the slope a of the regression line fit

〈F (n)〉 ∼ nα (6)

A fluctuation plot is a graph of log F (n) versus log n and the slope of the
fluctuation plot is the so called α scaling exponent which characterizes the
correlation in a time series. A slope α = 0.5 corresponds to a process with no
long-term correlations (random uncorrelated process, i.e white noise, or short-
term memory) whereas α = 1.5 corresponds to integrated random walk, i.e.
Brownian noise. If α = 1, temporal fluctuations are of flicker-noise type (1/f
noise), typical of systems in a self-organized critical state. The cases α > 1/2 and
α < 1/2 should be physically distinguished. For α > 1/2, there is persistence.
In this case, if in the immediate past the signal has a positive increment, then on
average an increase of the signal in the immediate future is expected. An exponent
α < 1/2 means antipersistence. In this case, an increasing value in the immediate
past implies a decreasing signal in the immediate future, while a decreasing signal
in the immediate past makes an increasing signal in the future probable (i.e. large
and small values of the time series are more likely to alternate). Thus, data records
with α < 1/2 appear very noisy. They have a local noise of the same order of
magnitude as the total excursion of the record.

Fluctuation analysis has been undertaken using custom-written IDL software.
The computer program was tested by using synthetic signals with a known fractal
dimension generated with the Weierstrass–Mandelbrot function [10].

3 Results and discussion

Significant wave height time series are obviously affected by seasonality and
the concept of long-memory refers to non-periodic processes. Thus the seasonal
variation of the sample mean, should be removed before analyzing the scaling
behavior of the time series. Seasonality in each value of Hsi has been removed by
subtracting the mean of the corresponding day of the year, obtained by averaging
over all years in the record. This approach has been also used by many authors
(see e.g., [11]). Consequently, analysis of fluctuations is based on the departures
of Hsi from their mean daily value Hsi for each calendar date i,

∆Hsi = Hsi − Hsi (7)

The significant wave height time series is shown in Fig. 1a in which the seasonal
behavior becomes evident. Time series of ∆Hs departures after removing the
annual cycle is shown in Fig. 1b.

The integrated deviations function, or profile, of the mean daily significant wave
height time series obtained by integration of the series of mean daily significant
wave height departures from the corresponding calendar day mean is presented in
Fig. 2. The complex behavior of Hs time series becomes apparent in this figure,
since there seems to be structures over a variety of scales. Note that if during a
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Figure 1: Time series of daily averaged significant wave heights measured during
the period (1998–2009) off Estaca de Bares, Spain, in the Cantabric Sea,
and Significant wave height time series deviations, ∆Hs, after removing
the seasonal component
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Figure 2: Mean-centred and integrated deviations of significant wave height. The
straight lines are an example of the fitted local trend within windows of
length n = 301 after partitioning the profile in Nb = 12 segments.

certain time period Hs is higher than the mean (stormy period), the slope of the
integrated time series y(n) for the specific period will be positive, while for periods
with Hs lower than the mean (periods of calm), the slope will be negative.
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The plot of log F (n) vs log n is shown in Fig. 3. Superposed straight lines are
the best fit in the least-squares sense and indicate scaling with α exponent. To
obtain statistically reliable estimates of the fluctuation function, the largest box
size used is nmax = N/4, such as suggested in [12]. It can be noticed that with
increasing the box size the fluctuation function increases as well. Nevertheless, it
is interesting to observe that the plot of log F (n) vs log n does not fit a single line
over the whole range of time scales. The plot, in fact, does not define a single long
range correlation exponent but instead two or more correlation ranges.

Examination of Fig. 3 reveals the existence of two crossover and provide
evidence of three distinct scaling exponents over an equal number of time scales.
While the data resemble Brownian noise, α = 1.36, dominance over short
time scales, up to 10–11 days, persistent long-range correlations, α = 0.79,
are identified over time scales between 10 days and 115 days, approximately.
This persistence crosses over to an almost independent random process scaling
behavior, α = 0.47, for larger time scales. This value of the DFA scaling exponent,
lower than 0.5 may indicate a crossover from persistent to anti-persistent random
behavior. However, this value is almost 0.5 and probably represents a random
behavior for larger time scales.
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Figure 3: Logarithm of the fluctuation function F (n) versus logarithm of time
scale n for daily average of significant wave height measured during 12
years off Estaca de Bares, Spain, in the Cantabric Sea.
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4 Conclusions

Detrended fluctuation analysis of mean daily significant wave height fluctuations
estimated from wave data taken in the Cantabric Sea, off Estaca de Bares Cape,
Coruña, in deep waters, during the period 1998–2008 is presented.

As is common in the fluctuation analysis of natural phenomena, the observed
DFA plot is not a single straight line but presents three different scaling regions
separated one from another by a crossover time.

It is shown that the associated time series display long-range dependence for
time scales from 10–11 days up to time scales close to 100 days, characterized by
a scaling exponent α = 0.79. For smaller time scales fluctuation analysis reveals
a Brownian noise-like behavior while for time scales larger fluctuations it tends to
depict a fully random behavior.

The observed difference in the scaling behavior may be due to variabilities in
the underlying physics governing the process. In particular, it may be related to
changes in the external atmospheric and oceanic forcing mechanisms over various
time scales but the origin of this diversity in scaling behavior should be investigated
in depth.
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