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Abstract 

Accurate current conditions prediction and supplement is an important task in the 
successful development and management of coastal zone infrastructure. 
Longshore current velocities forecasting is currently made by adopting 
conventional numerical and analytical models. In fact, longshore current 
velocities prediction in the conventional numerical and analytical models require 
a large amount information apart from historical wave observations and 
topography maps and are complex and tedious to apply specifically when point-
forecasts at specific locations are needed. Therefore, this paper presents an 
application of a neural network for forecasting and supplementing the daily and 
monthly longshore current velocities. The neural network was trained using back 
propagation and cascade correlation algorithms. The data of five stations along 
the Damietta promontory on the Egyptian Nile delta coast were used to test the 
performance of the neural network model. The results indicated that the neural 
network can efficiently forecast longshore current velocities. Neural network 
forecasting was also found to be more accurate than traditional statistical time-
series analysis. 
Keywords: longshore current velocities, forecasting, neural networks, ARIMA 
model. 

1 Introduction 

Longshore currents play the main role in sediment transport along the coast. The 
longshore current combined with the agitating action of the breaking waves, are 
the primary factors in causing sand movement. Studies indicate that the greatest 
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percentage of sand transport along a coast occurs shoreward of the breaker 
zone [1].  
     The strength of the littoral current in terms of the wave and beach 
characteristics for a relatively straight shoreline has been studied by several 
investigators, [2–6], and the subject is so important that many analytical 
solutions of the governing equations are published almost yearly.  As analytical 
solutions are made more general, however, their evaluation becomes 
mathematically and computationally complex.  
     The alternative approach to analytical models of the longshore current is to 
solve the governing equations numerically. The numerical models are more 
computationally efficient than the complex analytical solutions. While 
simulations space wise information yielded by these models is advantageous, 
they require excess information apart from historical wave observations and 
topography maps and are complex and tedious to apply specifically when point-
forecasts at specific locations are needed [1].  
     In a situation when a considerable amount of data about the studied processes 
is available, the use of traditional techniques may hardly be justified. In order to 
achieve optimal result it is important to use all available data. One of the options 
is to use regression – and auto-correlation – based statistical method like 
ARIMA models. However, with the recent advancements in artificial 
intelligence, data mining and soft computing, there is a choice of better 
techniques that may help to solve the problem. One of them is neural networks 
(NNs) which may be considered as a class of models which form a numerical 
modeling point view, are a general framework for representing non-linear 
mappings between multi-dimensional spaces in which the form of the mapping is 
governed by a number of adjustable parameters. It’s by the modification of the 
adjustable parameters that the NNs model “learns” or identifies the mapping [7]. 
     The present study aims to producing a reliable neural methodology applicable 
to the tasks of site-specific longshore current velocities estimations. The data 
base of Damietta promontory in Egypt was used to test the performance of the 
different models. 

2 Time series forecasting models 

2.1 ARIMA model 

Introduced by Box and Jenkins [8], the ARIMA model has been one of the most 
popular approaches to forecasting. In an ARIMA model, the future value of a 
variable is supposed to be a linear combination of past values and past errors, 
expressed as follows:
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where yt is the actual value and t is the random error at time t, i and j are the 
coefficients, p and q are integers that are often referred to as autoregressive and 
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moving average polynomials, respectively. Basically, this method has three 
phases: model identification, parameter estimation and diagnostic checking.  
     In the identification phase, data transformation is often needed to make the 
time series stationary. Stationary is a necessary condition in building an ARIMA 
model that is useful for forecasting. A stationary time series has the property that 
its statistical characteristics such as the mean and the autocorrelation structure 
are constant over time. When the observed time series presents trend and 
heteroscedasticity, differencing and power transformation are often applied to the 
data to remove the trend and stabilize the variance before an ARIMA model can 
be fitted. Once a tentative model is specified, estimation of the model parameters 
is straightforward. The parameters are estimated such that an overall measure of 
errors is minimized. This can be done with a nonlinear optimization procedure. 
     The last phase of model building is the diagnostic checking of model 
adequacy. This is basically to check if the model assumptions about the errors, t, 
are satisfied. Several diagnostic statistics and plots of the residuals can be used to 
examine the goodness of fit of the tentatively entertained model to the historical 
data. If the model is not adequate, a new tentative model should be identified, 
which is again followed by the steps of parameter estimation and model 
verification. Diagnostic information may help suggest alternative model(s). 
     This three phase’s model building process is typically repeated several times 
until a satisfactory model is finally selected. The final selected model can then be 
used for prediction purpose. 

2.2 Neural networks model 

NNs are flexible computing frameworks for modeling a broad range of nonlinear 
problems. One significant advantage of the NN models over other classes of 
nonlinear model is that NNs are universal approximators which can approximate 
a large class of functions with a high degree of accuracy. Their power comes 
from the parallel processing of the information from the data. No prior 
assumption of the model form is required in the model building process. Instead, 
the network model is largely determined by the characteristics of the data. 
     Single hidden layer feedforward (FF) network is the most widely used model 
form for time series modeling and forecasting [9]. The model is characterized by 
a network of three layers of simple processing units connected by acyclic links. 
The relationship between the output (yt) and the inputs (yt-1, yt-2,......,, yt-m) has the 
following mathematical representation: 
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where m is the number of input nodes, n is the number of hidden nodes, 
j(j=0,1,...,n) and Bij (i=0,1,...,m; j= 0,1,..., n) are the model parameters often 
called the connection weights. 0 and Boj are weights of arcs leading from the 
bias terms. The logistic function is often used as the hidden layer transfer 
function, that is,  
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Hence, the ANN model of eqn. (2) in fact performs a nonlinear functional 
mapping from the past observations (yt-1, yt-2,......,, yt-m) to the future value y, i.e., 

   tttt wyyyfy   ,...,,, p-t21  
(4) 

where w is a vector of all parameters and f is a function determined by the 
network structure and connection weights. Thus, the neural network is equivalent 
to a nonlinear autoregressive model. Note that eqn. (2) implies one output node 
in the output layer which is typically used for one-step-ahead forecasting. 

Many alternative training processes are available, out of which the present 
study adopted two schemes, back propagation (BP) and cascade correlation 
(CC). 

2.2.1  Back propagation algorithm 
The goal of any training algorithm is to minimize the global (mean sum squared) 
error E, defined below:   
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where On is the observations, and Pn is the predictions for any n output node. The 
summation has to be carried out over all output nodes for every training pattern. 
A pair of input and output values constitutes a training pattern. 
     The BP algorithm calculates the error using eqn. (5), and then it adjusts the 
weights, first in the output layer, and then distributes it backward from the output 
to hidden and input nodes. This is done using the steepest gradient descent 
principle where the change in weight is directed towards negative of the error 
gradient, i.e.  

 w
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where w is the weight between any two nodes; wn, wn-1 are the changes in this 
weight at n and n-1 iteration,   the momentum factor, and  is the learning rate. 

2.2.2 Cascade correlation algorithm 
The cascade correlation (CC) is another network that modifies its own 
architecture as training progresses. CC network starts with a minimal topology, 
consisting only of the required input and output units. This net is trained until no 
further improvement is obtained.  
     Next, one hidden node is added to the net in a two-step process.  During the 
first step, a candidate unit is connected to each of the input units, but is not 
connected to the output units. The weights on the connections from the input 
units to the candidate unit are adjusted to maximize the correlation between the 
candidate’s output and the residual error at the output units. The residual error is 
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the difference between the target and the computed output, multiplied by the 
derivative of the output unit’s activation function, i.e., the quantity that would be 
propagated back from the output units in the back propagation algorithm. When 
this training is completed, the weights are frozen and the candidate unit becomes 
a hidden unit in the net.  
     The second step in which the new unit is added to the net now begins. The 
new hidden unit is then connected to the output units, and the weights on the 
connections being adjustable. Now all connections to the output units are trained. 
Training of this node is based on maximization of overall correlation S given by: 
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where Vp is the output of the new hidden node for pattern p, 

V is the average of   

Vp over all patterns, Ep,o is the network output error for output node  o on pattern 

p  training pattern, and 


oE is the average of network error over all patterns. 

     The second step in which the new unit is added to the net now begins. The 
new hidden unit is then connected to the output units, and the weights on the 
connections being adjustable. Now all connections to the output units are trained. 
The addition of hidden nodes continuous until the desired learning is over. 
     Details of the concept of neural networks and the description of various 
training algorithms can be seen in References 10–12. 

2.3 Performance evaluation 

To examine how close of the predict to the real value of longshore current 
velocities, four indices, mean absolute percentage error MAPE, root mean square 
error RMSE, scatter index SI,  and correlation coefficient R, were employed to 
evaluate the performance of  neural networks and ARIMA model: 
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where  Oi  is the observed value, Pi is the predicted value, N is the total number 

of data points in validation, 

O  is the mean value of observations, and 


P is the 

mean value of predictions.  

3 Data acquisition 

There are twelve stations along the two promontories of the Egyptian Nile delta 
coast for measuring the longshore currents. Seven stations lie along both sides of 
Rosetta promontory and five stations along Damietta promontory. The longshore 
current measurements are taken two times per day. The longshore currents data 
was recorded in the surf zone, which is bounded by the shore and the breaker 
lines at depths ranging between 1.2 m to 1.5m. The measurements were taken by 
Coastal Research Institute, CRI over a period of 16 years ranging from 1982 to 
1997. The observations from five stations along Damietta promontory were used 
in this study. 

3.1 Pre-processing of data 

NNs have been shown to be able to process data from a wide variety sources. 
They are however, only able to process the data in a certain format. Furthermore 
the way the data is presented to the network affects the learning of the network. 
Therefore, a certain amount of data processing is required before presenting the 
training patterns to the network. In this study a linear scaling was used.  
     One of the reasons for pre-processing the output data is that a sigmoidal 
transfer function is usually used within the network. Upper and lower limits of 
output from a sigmoid transfer function are generally 1 and 0 respectively. 
Scaling of the inputs to the range   1,1  greatly improves the learning speed, 
as these values fall in the region of sigmoid transfer function where the output is 
most sensitive to variations of the input values. It is therefore recommended to 
normalize the input and output data before presenting them to the network. 
Scaling data can be linear or non-linear, depending on the distribution of the 
data. Most common functions are linear and logarithmic functions. A linear 
normalization function within the values of zero to one is:   
 

   minmaxmin / VVVVS   (12) 
 

where S is the normalised value of variable V, Vmin and Vmax are variable 
minimum and maximum values respectively.  

4 Results and discussion 

4.1  Monthly forecasts 

4.1.1 NNs model  
The determination of the optimal network architecture for a given task remains 
an open research question. Network size is determined by input number m, the 
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number of hidden layers and the number of neurons in the hidden layers. If 
different network sizes have similar values for the error function, the smallest 
network size is optimum.   
     Many techniques are proposed to determine optimum neural networks such as 
the ad hoc approach, the dynamic approach, and the distribution approach. In this 
study trails were used to characterize the deterministic and random properties of 
the data to determine optimum neural networks.  
     The longshore current data of Damietta promontory pertaining to the first 
thirteen years (from 1982 to 1994) was used for training while the observations 
of the last three years (from 1995 to 1997) were reversed for testing the network. 
It was found that the minimum input number of dynamic variables needed to 
train the networks equal three preceding values. At the length of input sequence 
(m) equal 3, there is a maximum statistical independence between distance 
observations of data series, so, m = 3 maximize the network ability to learn from 
the data and should be the optimum number of nodes in the input layer. To verify 
the optimum input number, RMSE corresponding to various input number of 
nodes is calculated. It is found that neural networks corresponding to m = 3 give 
minimum RMSE. 
     To finally determine the optimum size of neural networks based on the 
determined input numbers, the networks with one hidden layer were used for 
training and test by changing neuron size in the hidden layer. It is found that the 
network with one layer and five neurons can make RMSE converge to lower 
values. In the case of the alternative CC scheme, hidden layers and neurons get 
automatically fixed during training as explained in the sec. 2.2.2.The neural 
network models were trained using backpropagation and cascade correlation and 
all computations were performed within the MATLAB version 6.1.0.450 
release 12.1 (The Math Works Inc. May18, 2001). Figure 1 represents the 
topology of the optimum network trained using BP algorithm. In this figure  
yt, yt-1, ..., yt-3denote longshore current velocity at time t, t-1, ..., t-3, respectively. 
     For the developed BP network mentioned earlier, the results tested instances 
for monthly longshore current velocities were shown in Figure 2. The predictions 
can be seen as fairly close to the corresponding actual measurements. All ups 
and downs in the observed time series may well be modeled well in the predicted 
series. It can be observed that a maximum absolute percentage error of 9.18%, a 
minimum absolute percentage error of 0.17% and the MAPE of 4.87% were 
obtained between the predicted and the observed series. The correlation 
coefficient of 0.957 was obtained for longshore current velocities prediction.  
     The longshore current velocities forecasting as above based on FF-BP was 
repeated by using the CC scheme of training. . This was done to see whether the 
training improves by adopting a different algorithm. It was found that a 
maximum absolute percentage error of 8.34%, a minimum absolute percentage 
error of 0.18% and the MAPE of 4.43% were obtained between the predicted and 
the observed series. The correlation coefficient of 0.965 was obtained for 
longshore current prediction. Results of the testing of this network indicated 
almost same performance of the PB training method. 
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Figure 1: Structure of the artificial neural network. 

 

Figure 2: Time series plot of monthly longshore current velocities observed 
and predicted by FF-PB. 

4.1.2 ARIMA model 
The ARIMA model was implemented via SAS/ETS software version 6, 
a component of the SAS system (SAS Institute, Inc., 1992). This model was used 
to forecast longshore current velocities. Similar to the case of neural networks 
the model was calibrated using the first 13 years data and tested on the last 3 
years observations. Considerable experimentation was made to arrive at the most 
satisfactory calibration. Figure 3 represent the time series plot of monthly 
longshore current velocities observed and predicted. It can be observed that a 
maximum absolute percentage error of 14.69%, a minimum absolute percentage 
error of 1.23% and the MAPE of 6.801% were obtained between the predicted 
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and the observed series. The correlation coefficient of 0.931 was obtained for 
longshore current velocities prediction.  
     Table 1 compares the forecasting results of different models. Those results 
indicate that the neural networks model (PB and CC) outperforms the ARIMA 
model in terms of four indices, revealing that the ARIMA model cannot capture 
all of the patterns in the longshore current velocities. The neural networks model 
is, however, can significantly reduce the overall forecasting errors. Furthermore, 
the results indicate the proposed CC model is superior to PB model. The 
development of the longshore current velocities scheme in a model free manner 
seems to have resulted in more flexibility in the data mining approach of neural 
network than one associated with fixed type of stochastic time series schemes 
(ARIMA). In terms of RMSE, the percentage improvements of the CC scheme 
over ARIMA and FF-BB for monthly forecasting were 51.88% and 10%, 
respectively. 

 

Figure 3: Time series plot of monthly longshore current velocities observed 
and predicted by ARIMA. 

Table 1:  Evaluating performance of models. 

Forecast Scheme MAPE (%) RMSE SI (%) R 
Month FF-BP 4.873 5.461 17.739 0.957

 FF-CC 4.43 4.964 16.126 0.965

 ARIMA 6.801 7.535 24.477 0.931
Daily FF-BP 8.68 9.404 32.816 0.951
 FF-CC 7.548 8.178 28.536 0.962

 ARIMA 11.677 12.943 45.163 0.927
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4.2 Daily forecasts 

Here also, like in the case of monthly longshore current velocities forecasting FF 
network trained using BP and CC algorithms were developed using the first 
thirteen years data and tested using three years data (as well as ARIMA schemes 
for compression purpose). Figure 4 shows the performance of neural networks 
with respect to testing a set of longshore current data belonging to the last 3 
years of measurement, while Figure 5 shows the same for the ARIMA model. 
Here also, like the previously described monthly predictions, the neural network 
 

 

Figure 4: Scatter plot comparing observed and predicted daily longshore 
current velocity by FF-BP. 

 

Figure 5: Scatter plot comparing observed and predicted daily longshore 
current velocity by ARIMA. 
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model can be seen to perform more satisfactorily than the ARIMA model. The 
CC scheme found that 58.27% and 15% decrease in RMSE over ARIMA and 
FF-BB, respectively. 
     Table 1 shows that forecasting accuracy decreased as the interval of 
forecasting reduced from one month to one day.  As the noise in the time series 
increases, neural network performance generally gets worse. Similar to the 
monthly forecasting here also the neural network approach was more satisfactory 
than the traditional stochastic ARIMA model. Although both neural networks 
and ARIMA models perform worse as data becomes noisier, neural networks 
seem to be more robust as the differences between the two models are getting 
larger. 

5 Conclusions 

Longshore currents play the main role in sediment transport along the Egyptian 
Nile delta coast. The longshore current prediction in the conventional numerical 
models require a large amount information apart from historical wave 
observations and topography maps and are complex and tedious to apply 
specifically when point-forecasts at specific locations are needed. In this study, 
the neural mythology was implemented to forecast longshore current velocities. 
For this, the data were used, which were collected by Coastal Research Institute 
(CRI) for a period of sixteen years from 1982 to 1997 at Damietta promontory of 
Nile delta coast. 
     In this study two different NN training algorithms (PB and CC) and ARIMA 
were used in order to show the significance of suitable selection of the 
appropriate NN training algorithm. 
     A compression of results between feed forward neural network model (BP 
and CC) and the ARIMA model would show that the neural network perform 
much better than ARIMA. The four indices (MAPE, RMSE, SI, and R) were all 
the lowest for the neural network model. The results indicated that the ARIMA 
model does not capture the entire pattern of longshore current velocities.  Among 
the PB sand CC networks employed for forecasting the longshore current 
velocities, the CC scheme was found to be superior to the PB scheme. The 
development of the longshore current velocities scheme in a model free manner 
seems to have resulted in more flexibility in the data mining approach of neural 
network than one associated with fixed type of stochastic time series schemes 
(ARIMA).  
     Forecasting accuracy decreased as the interval of forecasting reduced from 
one month to one day. This is expounded that the over fitting was made by large 
training patterns. 
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