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ABSTRACT
A numerical method is described for the semi-explicit solution of the constitutive equation of an
orthotropic non-linear elastic material with various constraints on the stress. Each constraint forces
the stress to belong to a closed and convex cone in the space of second order symmetric tensors, and
via the choice of appropriate values cones vertex is possible to assign different strength characteristic
in different directions. The constitutive equation thus formulated allows to model masonry with
very general textures. However application to problems of equilibrium and evolution requires some
numerical expedients which are described in detail in this paper. The equation, implemented in the
MADY finite element code, has been used to examine how the masonry panel strength changes as a
function of traction directions. The results have been compared with the analougous obtained modelling
the masonry at the micro scale.
Keywords: orthotropic materials, masonry panels.

1 INTRODUCTION
A constitutive model for masonry materials requires accounting for its poor tensile strength.
This need led to the study of the masonry-like material [1], which in its original formulation
imposes the constraint on the stress T of being semi-defined negative. The equation was then
generalized by also imposing a limit on compressive and shear strength [2], [3]. Each of these
constraints requires T to belong to a specific closed and convex cone, whose intersection
is the stress range K. Having assigned a strain tensor E and the symmetric and positive-
definite tensor C of the elastic moduli, the stress T is obtained by projecting CE onto K,
with respect to a suitable scalar product. In other words, it is required that the inelastic strain
Ea = E − C−1T belongs to the normal cone of K in T . The existence and uniqueness of
the projection follows by the minimum norm theorem and the result is a hyperelastic material
which has been defined normal-elastic material.

In order to apply this constitutive equation to engineering problems, it is necessary to
resort to numerical analysis. This in turn required that the constitutive equation be explicitly
solved and the derivative of the stress with respect to the strain explicitly calculated [4]. With
the constraints on the stress that were taken into account, K resulted to be a spherical set,
i.e. such that K = QKQT , for each rotation Q, and moreover C was hypothesized to be an
isotropic tensor. The first of these properties implies the coaxiality between the stress and
the inelastic strain, and the second (if the first is guaranteed) implies the coaxiality between
the stress and the strain. The fact that T , E and Ea are all coaxial tensors allowed to solve
the constitutive equation in their common characteristic space, simplifying the problem. This
constitutive equation has been applied to the study of numerous monuments and may be
effective for certain buildings where the texture and the properties of the masonry cannot
be easily evaluable. On the other hand, for different applications a model that takes into
account the different properties of the material in different directions is certainly more
realistic [5], [6]. For this reason in [7] the equation has been generalized allowing the tensor
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of the elastic moduli to be orthotropic. Consequently, the coaxiality between T and E has
been lost, but that between T and Ea is maintained.

In [8], the material has been supposed to have different strength characteristics in different
directions, a circumstance that can often occur due to the constructive techniques and to
material’s damage process. In such a case, the stress range K is made by the intersection of
several closed and convex cones each of which has as its vertex a tensor that is not necessarily
spherical. Thus, the coaxiality between T and Ea is lost. Despite the greater complexity that
must be tackled, the strain space is always naturally divided into a finite number of regions
and E belong to one of these determines the solution of the constitutive equation. Thanks to
this property, albeit with some expedient, it is possible to obtain an “almost explicit” solution
of the constitutive equation. However, this generalization requires new numerical procedures,
mainly because it is not possible to determine a priori the region to which the deformation
belongs, and therefore it is necessary to proceed by trials and errors.

In this paper, the numerical techniques that allow to apply this constitutive equation to
equilibrium and evolution problems is described in detail. Then the equation, implemented in
the finite element code MADY, is used to solve same test case. In particular, a panel with a
typical texture is considered and analyzed at the microscale by subjecting it to a tensile force
that is applied in five different directions and increased until the collapse. Subsequently, a
“homogeneous” panel with a tensile strength deduced from the previous test is subjected to
the same loads. It is evidenced how the texture can be well modelled by a suitable choice of
the vertices of K.

2 NOTATIONS AND BACKGROUND
Let Sym be the space of the symmetric second order tensor with the inner product
A ·B =tr(AB), and the corresponding Euclidean norm || ||. The energetic inner product
(A,B)E = A · C−1B and the corresponding norm denoted by || ||E will also be considered.
Moreover, if K ⊂Sym is the non empty, closed and convex set made by all the admissible
stresses, for each T ∈ ∂K (the boundary of K), the normal cone of K at E is denoted by
N (K,T ).

Assigned a strain tensor E, there exists only one element T ∈ K having the minimum
energy distance from CE, i.e. such that

‖CE − T ‖E = minS∈K ‖CE − S‖E . (1)

This is equivalent to saying that T is the projection of CE onto K, with respect to the
energetic norm, i.e. E − C−1T belongs to N (K,T ).

Relation T = T̂ (E) defines the constitutive equation of a non linear hyperelastic material
that is termed normal elastic material [1]. Once set

Ee = C−1T , Ea = E − C−1T , (2)

it turns out E = Ee + Ea; Ee and Ea are said, elastic and inelastic part of the
deformation, respectively In particular, if T is a regular point of ∂K and N(T ) is the
corresponding unit outward normal, then

Ea = αN(T ), α ≥ 0, (3)

holds. Note that if K is a spherical tensor then N(T ) is an isotropic function of T and then
T and Ea have the same characteristic space so that TEa = EaT .

From eqn (2)
CE − T = αCN(T )
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follows and then, with a few substitutions,

T = CE − (CE − T ) ·N
N · CN

CN = CE − (CN ⊗N)
N · CN

(CE − T ) (4)

is obtained.
Let be E = C−1(K); if T = T̂ (E) ∈ ∂K then E ∈ ∂E and, if T is a regular

point of ∂K also E is a regular point of ∂E , with outward unit normal M(E) =
CN(T̂ (E))/‖CN(T̂ (E))‖.

A convex cone with vertex V is a non-empty, closed set C containing the origin 0 of Sym,
such that

V + a(S − V ) + b(T − V ) ∈ C, for each S,T ∈ C and for each a ≥ 0 and b ≥ 0. (5)

Proceeding in a similar way to what done in [9], it can be verified that for this set the
normal cone N (C,T ) is made up of all the elements A ∈Sym such that

(i) (T − V ) ·A = 0, (ii) (S − V ) ·A ≤ 0, for each S ∈ C. (6)

Let T ∈ ∂C be a regular point and N(T ) the corresponding outward unit normal. Then,
in view of eqn (6)1 it holds

(T − V ) ·N(T ) = 0. (7)

This implies

(CE − T ) ·N(T ) = (CE − T + T − V ) ·N(T ) = (CE − V ) ·N(T ),

and then from eqn (4) it follows

T = CE − (CN ⊗N)
N · CN

(CE − V ), (8)

which is more convenient relation than eqn (4) because in applications V is known.

3 MATERIALS WITH LIMITED TENSILE, COMPRESSIVE
AND SHEAR STRENGTH

The Let Sym− and Sym+ the subsets of Sym consisting of the negative and positive semi
definite tensors, respectively, and let T t, T c and T s be positive semi definite tensors.
A material is said to have limited tensile, compressive and shear strength if the stress is
constrained to belonging to the closed and convex set K which is made by the intersection of
the three cones

T = {T ∈ Sym : tr(T − T t) ≤ 0, det(T − T t) ≥ 0}, (9)

C = {T ∈ Sym : tr(T + T c) ≥ 0, det(T + T c) ≥ 0} (10)

and

S = {T ∈ Sym : ||T − T s||2 −
1 + sin2φ

2
(tr(T − T s))2 ≤ 0, tr(T − T s) ≤ 0} (11)

with vertex T t, T c and T s, respectively, and whose boundary is made up, in addition to
{T t}, {T c} and T s, of the sets

{T ∈ Sym : tr(T − T t) < 0, det(T − T t) = 0}, (12)
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Figure 1: The stress constraints.

{T ∈ Sym : tr(T + T c) > 0, det(T + T c) = 0} (13)

and

{T ∈ Sym : 2 ‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 = 0, tr(T − T s) < 0}. (14)

The three cones are shown in Fig. 1, with different colors because they are represented
in the characteristic spaces of T − T t, T + T c and T − T s, which in general are different
from each other. It comes down to the usual case when T t, T c and T s are spherical tensors,
and the coaxiality of T , T t, T c and T s allows to representK in the characteristic space of T ,
as shown in Fig. 2(a).

4 DETERMINATION OF THE STRESS
Let the orthonormal vectors e1 and e2 define the symmetry directions of a plane orthotropic
body [10] which are assumed as refence system. The elasticity tensor is

C =

C1111 C1122 0
C1112 C2222 0

0 0 C2323

 ,

where

C1111 =
E11

1− ν12ν21
, C1122 =

ν12E22

1− ν12ν21
=

ν21E11

1− ν12ν21
,

C2222 =
E22

1− ν12ν21
, C2323 = 2G,

with E11, E22 and ν12, ν21 the corresponding Young and Poisson moduli, respectively.
By denoting

E22 = βE11, ν21 = β ν12, 2G =
φE11

1− βν2
12

and writing E for E11 and ν for ν12, it is obtained

C =
E

1− βν2

 1 βν 0
βν β 0
0 0 φ

 (15)

and

C−1 =
1
E

 1 −ν 0
−ν 1/β 0
0 0 (1− βν2)/φ

 . (16)
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In the particular case of β = 1 and φ = 1− ν, the material is isotropic. Let

E = ε11e1 ⊗ e1 + ε22e2 ⊗ e2 + ε12(e1 ⊗ e2 + e2 ⊗ e1)

be the assigned strain tensor so that

CE =
E

1− βν2

(
(ε11 + βνε22)e1 ⊗ e1 + β(ε22 + νε11)e2 ⊗ e2

+ φε12(e1 ⊗ e2 + e2 ⊗ e1)
)
. (17)

In order to solve the constitutive equation a semi explicit procedure has been developed.
All constraints are expressed in the reference system.

Let T be the traction cone with vertex

T t = σtxe1 ⊗ e1 + σtye2 ⊗ e2 + τt(e1 ⊗ e2 + e2 ⊗ e1). (18)

The eigenvalues (σt1 , σt2 ) are the values of the tensile strength referred to the corresponding
principal directions (et1 , et2 ). In the characteristic space, the cone can be represented as a
plane region as shown in Fig. 1(a).

Analougously, the shear cone S has vertex

T s =
τ0x
m

e1 ⊗ e1 +
τ0y
m

e2 ⊗ e2 +
τs
m

(e1 ⊗ e2 + e2 ⊗ e1). (19)

Its eigenvalues ( τ01m ,
τ02
m ) are the ratio between coesion and m = tan φ, referred to the

principal directions (es1 , es2 ). In this characteristic space, such constraint can be represented
as a plane region, as shown in Fig. 1(b).

Lastly, the compression cone C has vertex

T c = σcxe1 ⊗ e1 + σcye2 ⊗ e2 + τc(e1 ⊗ e2 + e2 ⊗ e1), (20)

whose eigenvalues are the value of compressive strength (σc1 , σc2 ) referred to its principal
directions (ec1 , ec2 ). In its characteristic space, C can be represented as a plane region as
given by Fig. 1(c).

If the vertices of the cones are spherical tensors and C is isotropic, K is a spherical set
(i.e. T ∈ K ⇔ QTQT ∈ K for each rotation Q). Then, the characteristic spaces of T − T t,
T − T s and T + T c coincide so that K (the intersection among the three cones) and Ea can
be represented, in the common characteristic space as a plane domain (Fig. 2(a)).

If the vertices of the cones are not spherical tensors, a plane representation of K does not
exist; however, the 2D pseudo-representation depicted in Fig. 2(b) is useful, as it allows an
easier determination of the normals to the edges of ∂K. The use of different colours underlines
that such representation refers simultaneously to different reference systems.

When the constraints act simultaneously,K depends on T t, T s and T c, and three different
situations can occur.

Case 1: The traction constraint is ineffective (Fig. 3), as T t is outside the shear cone i.e.

2‖T t − T s‖2 − (1 + sin2φ)tr(T t − T s)2 > 0, tr(T t − T s) > 0. (21)

Case 2: All the constraints are effective (Fig. 4), when T t belong to shear cone

2‖T t − T s‖2 − (1 + sin2φ)tr(T t − T s)2 ≤ 0, tr(T t − T s) ≤ 0. (22)
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Figure 2: The admissible domain.

Figure 3: Case 1.

Figure 4: Case 2.

Case 3: the shear constraint is ineffective (Fig. 5), as the intersection between the cones
T and C is entirely contained in the cone S.

For the sake of example, the semi-explicit procedure to determine the solution of the
constitutive equation is given with reference to Case 2.

Let us denoteR0 as the interior ofK andR1,R12,R2,R23,R3,R34 andR4 the regions
that define a partition of ∂K:

R0 = {T ∈ Sym : det(T − T t) ≥ 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 ≤ 0, tr(T − T s) ≤ 0

det(T + T c) ≥ 0, tr(T + T c) ≥ 0}, (23)
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Figure 5: Case 3.

R1 = {T t}, (24)

R12 = {T ∈ Sym : det(T − T t) = 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 ≤ 0, tr(T − T s) ≤ 0

det(T + T c) ≥ 0, tr(T + T c) ≥ 0}, (25)

R2 = {T ∈ Sym : det(T − T t) = 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 = 0, tr(T − T s) ≤ 0

det(T + T c) ≥ 0, tr(T + T c) ≥ 0}, (26)

R23 = {T ∈ Sym : det(T − T t) ≥ 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 = 0, tr(T − T s) ≤ 0

det(T + T c) ≥ 0, tr(T + T c) ≥ 0}, (27)

R3 = {T ∈ Sym : det(T − T t) ≥ 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 = 0, tr(T − T s) ≤ 0

det(T + T c) = 0, tr(T + T c) ≥ 0}, (28)

R34 = {T ∈ Sym : det(T − T t) ≥ 0, tr(T − T t) ≤ 0,
2‖T − T s‖2 − (1 + sin2φ)tr(T − T s)2 ≤ 0, tr(T − T s) ≤ 0

det(T + T c) = 0, tr(T + T c) ≥ 0}, (29)

R4 = {T c}. (30)

Let Eij denote the region that will be mapped inRij and E0 the region that will be mapped
inR0.

If CE ∈ K then E ∈ E0, T = CE and Ea = 0. Otherwise, CE has to be projected onto
∂K, and E has to be splitted in two parts (Ee + Ea) so that T (∈ ∂K) = C[E − Ea].

Firstly, it can be directly verified if E belongs to one of the regions E0, E1 or E4

E0 = {E ∈ Sym : det(CE − T t ≥ 0, tr(CE − T t ≤ 0,
2‖CE − T s‖2 − (1 + sin2φ)tr(CE − T s)2 ≤ 0, tr(CE − T s) ≤ 0

det(CE + T c) ≥ 0, tr(CE + T c ≥ 0}, (31)
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E1 = {E ∈ Sym : det(E − C−1Tt) > 0, tr(E − C−1Tt) > 0}

or
E4 = {E ∈ Sym : det(E + C−1Tc) > 0, tr(E + C−1Tc) < 0}.

If not, let us suppose that E belongs to E12. Let f1, f2 be the orthonormal basis of the
characteristic space of T − T t and let θ ∈ [−π/2, π/2] be the unknown angle that f1 forms
with e1 (Fig. 6), so that

T − T t = σf1 ⊗ f1 N12 = f2 ⊗ f2, (32)

where σ ≤ 0 is unknown.

Figure 6: Reference systems.

Since
f1 · e1 = f2 · e2 = cosθ, f1 · e2 = −f2 · e1 = sinθ,

we obtain

f1 ⊗ f1 =
1

1 + t2

(
e1 ⊗ e1 + t(e1 ⊗ e2 + e2 ⊗ e1) + t2e2 ⊗ e2

)
, (33)

f2 ⊗ f2 =
1

1 + t2

(
t2e1 ⊗ e1 − t(e1 ⊗ e2 + e2 ⊗ e1) + e2 ⊗ e2

)
, (34)

where t = tanθ.
The expressions of T and N12, with respect to the base e1, e2 can now be deduced by

eqns (32)–(34), as functions of the unknowns quantity σ and t, i.e.

T =
1

1 + t2

(
σe1 ⊗ e1 + σt(e1 ⊗ e2 + e2 ⊗ e1) + σt2e2 ⊗ e2

)
(35)

+ σtxe1 ⊗ e1 + σtye2 ⊗ e2 + τt(e1 ⊗ e2 + e2 ⊗ e1), (36)

N12 =
1

1 + t2
(
t2 e1 ⊗ e1 − t(e1 ⊗ e2 + e2 ⊗ e1) + e2 ⊗ e2

)
. (37)

Then, from the system T = C[E − αN12], three equations can be obtained in the unknows
α, σ and t, where t is the solution of the algebraic equation:

at4 + bt3 + dt+ e = 0 with (38)

a = Eφε12 + τt(βν2 − 1),

b = E(φε11 + βε22(βν2 + νφ− 1)) + (βν2 − 1)(σtx(βν + φ)− σty),
d = −Eβ(ε11(βν2 + νφ− 1) + ε22φ)− (1− βν2)(βσtx − σty(βν + φ)),

e = −β(Eφε11 + τt(βν2 − 1)).
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Once eqn (38) has been numerically solved,

α =
(1 + t2)(E(ε11(t2 − βν) + βε22(νt2 − 1)) + (t2σtx − σty)(βν2 − 1))

E(t4 − β)
(39)

and

σ =
(1 + t2)(Eβ(ε11 − t2ε22)− βσtx(1 + νt2) + σty(t2 + βν))

β − t4
(40)

can be determined. Now, if α ≥ 0 and σ is such that T , given by eqn (36), belongs to the
intersection of S and C (see eqns (10), (11)), then E ∈ E12 and T is the solution of the
constitutive equation. If it does not happen, let us suppose E to belong to E23.

Let g1, g2 be the orthonormal basis of the characteristic space of T − T s. Then,

T − T s = σg1 ⊗ g1 +
σ(r −m)
r +m

g2 ⊗ g2, (41)

N23 =
√

2(r −m)
2s

g1 ⊗ g1 −
√

2(m+ r)
2s

g2 ⊗ g2, (42)

with r =
√

1 +m2 and s =
√

1 + 2m2. With respect to the orthonormal basis e1, e2, from
eqns (41), (33) and (34), we obtain

T =
−σ

1 + t2

[(
t2 − 1− 2rt2

m+ r

)
e1 ⊗ e1 −

2mt
r +m

(e1 ⊗ e2 + e2 ⊗ e1)

+
(

1− t2 +
2r

m+ r

)
e2 ⊗ e2

]
+
τ0x
m

e1 ⊗ e1 +
τ0y
m

e2 ⊗ e2

+
τs
m

(e1 ⊗ e2 + e2 ⊗ e1), (43)

N23 =
√

2
2s(1 + t2)

[r(1− t2)−m(1 + t2)e1 ⊗ e1 + rt(e1 ⊗ e2 + e2 ⊗ e1)

−m(1 + t2)− r(1− t2)e2 ⊗ e2)] (44)

in the unknows σ and t. Moreover, with the help of eqn (17), the unknows ω, σ and t can be
deduced from the three equations T = C[E − ωN23] as in the previous region.

Now, if ω ≥ 0 and T , as given by eqn (43), belongs to the intersection between T and C
(see eqns (9), (10)), E belongs to E23 and T is the solution.

Otherwise, let us suppose E to belong to E2. If so, its image T has to belong to the
intersection of R12 and R23. Then, T − T t can be write with respect to the orthonormal
base f1,f2 as

T − T t = σ1f1 ⊗ f1,N
12 = f2 ⊗ f2, (45)

and, with respect to the base g1, g2 as

T − T s = σ2g1 ⊗ g1 +
σ2(r −m)
r +m

g2 ⊗ g2,

N23 =
√

2(r −m)
2s

g1 ⊗ g1 −
√

2(m+ r)
2s

g2 ⊗ g2. (46)
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Let θ1, θ2 ∈ [−π/2, π/2] be the angles between e1 and, respectively, f1, g1. Then, from
eqn (45)

T =
1

1 + t21

(
σ1e1 ⊗ e1 + σ1t1(e1 ⊗ e2 + e2 ⊗ e1) + σ1t

2
1e2 ⊗ e2

)
(47)

+ σtxe1 ⊗ e1 + σtye2 ⊗ e2 + τt(e1 ⊗ e2 + e2 ⊗ e1), (48)

N12 =
1

1 + t21

(
t21 e1 ⊗ e1 − t1(e1 ⊗ e2 + e2 ⊗ e1) + e2 ⊗ e2

)
(49)

and from eqn (46)

T =
−σ2

1 + t22

[(
2rt22
−m− r

+ t22 − 1
)

e1 ⊗ e1 +
−2mt2
r +m

(e1 ⊗ e2 + e2 ⊗ e1)

+
(

1− t22 −
2r

−m− r

)
e2 ⊗ e2

]
+
τ0x
m

e1 ⊗ e1 +
τ0y
m

e2 ⊗ e2

+
τs
m

(e1 ⊗ e2 + e2 ⊗ e1), (50)

N23 =
√

2
2s(1 + t22)

[−m(1 + t22) + r(1− t22)e1 ⊗ e1 + rt2(e1 ⊗ e2 + e2 ⊗ e1)

−m(1 + t22)− r(1− t22)e2 ⊗ e2)]. (51)

with t1 = tan θ1 and t2 = tan θ2. Therefore, by a comparison between eqns (47) and (50),
we have

σ1 =
1 + t21
m

m2c1 +m(rc1 − c2) + rc2
m(1− t21)(1 + t22)− r(1 + t21)(1− t22)

, (52)

with c1 = σtxt
2
2 − σty and c2 = τ0y − τ0xt22,

σ2 =
1 + t22
m

m2(t21 − 1)(trTt − trTS) + r(1 + t21)(τ0y − τ0x +m(σtx − σty))
m(1− t21)(1 + t22)− r(1 + t21)(1− t22)

(53)

and

m2(σtxt2(1− t1)2 + σty(t21t2 + 2t1 − t2)) +m(rt2(σtx − σty)(1 + t21)− t21t2(τ0x + τ0y)

+ 2t1(t22τ0x − τ0y + t2(τ0x + τ0y)) + rt22(1 + t21)(τ0y − τ0x) = 0. (54)

Moreover, as Ea is the linear combination Ea = αN12 + ωN23 and C[E −Ea] = T ,
three equations are deduced that, together with eqn (54), allow us to solve the problem in the
unknowns t1, t2, α and ω.

If α ≥ 0, ω ≥ 0 and T ∈ C, E belongs to E2 and T is its image in ∂K. Otherwise, with a
procedure similar to the previous one, the (unique) projection T of CE onto K can be found.

5 NUMERICAL EXAMPLE
A very simple example is presented to highlight the potentials of the model, capable to
accounting for the different directions material’s strength. It takes into account solely the
traction constraint and despite its simplicity, it allows to appreciate the capabilities of the
proposed model generalization. The different directions material’s stiffness have also been
neglected since the focus is pointed out on material’s strength. The results obtained via the
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Figure 7: Samples considered in the numerical tensile tests.

proposed model is compared to those obtained by modelling at the micro-scale the texture of
a brick’s wall.

In the MADY code, the micro-scale models have been built by realizing suitable meshes
and by assigning an isotropic non-linear elastic model to the mortar (blue) while the bricks
(yellow) have been considered linear elastic – with E = 0.1 GPa, ν = 0.1, σt = 0.01 MPa,
σc = 0.1 MPa for the mortar, and E = 0.7 GPa, ν=0.1 for bricks (see Fig. 7). These values
of mechanical properties are usually used for mortar and bricks in masonry panels. It should
however underline that the choice of suitable parameters values is beyond of the scope of the
paper. In fact, the main purpose of the example presented is to highlight the model’s capability
of simulating the texture’s effect in masonry structures. For the numerical simulations, 4-
nodes plane stress isoparametric elements have been used.

Five numerical tensile tests in the horizontal direction have been performed under
displacement control, and the collapse load of the various samples has been determined.

For the “homogenous” model that no longer distinguishes between mortar and bricks, a
Young modulus equal to that of the mortar has been assumed; as regards to the strength, the
values of σtx and σty have been calibrated by a comparison with the results of the test for
θ = 0◦ and θ = 90◦. All the other cases have been modelled keeping unchanged the values
of the mechanical parameters but assuming the appropriate rotations of K. Thus, the generic
value of Tt can be obtained as a function of σtx, σty and θ, i.e.

Tt = σtxcos2θ + σtysin2θe1 ⊗ e1 + σtxsin2θ + σtycos2θe2 ⊗ e2

+ (σty − σtx)sinθcosθ(e1 ⊗ e2 + e2 ⊗ e1). (55)

The graph of Fig. 8 shows the collapse stress vs θ, as predicted by the proposed model
compared to that obtained by means of the micro-scale tests.
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Figure 8: Collapse stress σ vs θ as predicted by the proposed model and the micro-model.
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6 CONCLUSION
The proposed model allows to analyze plane bodies made of nonlinear elastic materials whose
stress is forced to belong to the intersection of some closed and convex cones. In the proposed
formulations, the vertices of the cones are allowed not to be spherical tensors. With this
generalization, it has become possible to assign different strength in different directions. In
this manner, the model is capable to capture some key aspects of the mechanical behavior
of a masonry wall, that generally require to resort to more complex micro scale description.
Nevertheless, given the lost of coaxiality between the stress and the inelastic strain becomes
more difficult to solve the constitutive equation and some numerical escamotage are needed
to have a efficient algorithm. Finally, the capabilities of differentiating the material’s strength
is a fundamental step of considering different damage process in different directions.
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