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ABSTRACT 
Lightweight aggregates (LWA) are used to produce low-density concretes required for building 
applications. Lightweight aggregate concrete (LWAC) is a multi-purpose material for construction, 
which offers technical, economical and environment benefits, and it is produced by replacing the 
normal-weight aggregates with LWA, depending upon the requirements of density and strength. LWAC 
is a complex composite material, and a model of its compressive strength must be highly nonlinear 
because it is very sensitive to its ingredients, so modelling its behaviour is a difficult task. Many studies 
have tried to develop accurate and effective predictive models for LWAC compressive strength. In this 
study, a support vector machine (SVM) learning algorithm is used to propose a model to classify the 
compressive strength of a wide range of LWAC. A dataset of 241 different LWACs were used for 
classifying the compressive strength into six different classes (from low-strength to high-strength) using 
different variables – quantity of cement, water and LWA in the dosage and density of the LWAC 
produced. The results show that increasing the variables means the model becomes more accurate up 
to approximately an 80% rate of success. The SVM model proved to be a significant tool to classify the 
compressive strength of LWAC contributing to engineers avoiding costly experimental trial tests. 
Keywords:  lightweight concrete, aggregate, vibration, classification, modelling. 

1  INTRODUCTION 
Due to the increasing energy consumption, the requirements for higher building energy 
efficiency have been widely considered [1], [2]. Insulation materials, such as, cement-based 
porous materials, including aerated concrete, foamed concrete and lightweight aggregate 
concrete (LWAC), exhibit superior fire resistance and more desirable insulation properties 
than the conventional concrete materials [3], [4]. 
     LWAC is an important and versatile material for use in modern construction [5]. The 
application of lightweight concrete is not only used as an insulation material, it has other 
actual engineering applications such as large-span bridges, high-rise buildings, tall concrete 
wind towers [6] and offshore oil platforms because of the lower density, higher 
strength/weight ratio and better durability properties [7]. 
     Research has been conducted worldwide on a large number of natural and artificial 
lightweight aggregates used in the manufacture of mortar and concrete. The absorption 
caused by the lightweight aggregate is mainly responsible for the difficulty during the 
production of lightweight aggregate concrete (LWAC) in practical situations [8]. LWA are 
generally porous materials, which tend to absorb water in aqueous [9] and viscous medium 
[10]. The mix design of LWAC is more complex than a conventional normal-weight concrete 
because there are more design parameters – such as absorbed water during the mixing of 
concrete and proportioning of different aggregate sizes. Changing the LWA used in the 
concrete varies other properties of LWAC like compressive strength and density which is not 
predictable for all types of lightweight aggregates. For this reason, many different techniques 
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have been used to provide better mixtures design using different types of approaches [11], 
such as genetic algorithms [5], artificial neural networks [12], [13] or finite elements [14]. 
     There are also difficulties in the placement of the LWAC. During the mixing of LWAC, 
due to the different densities of its components, LWAC is susceptible to segregation of the 
aggregates [15]. In fact, during the vibration of the concrete, lightweight aggregates tend to 
float. Segregated concretes are susceptible to an increased risk of cracking due to the 
separation of the aggregates from the rest of the mixture reducing their durability [13]. There 
are several methods to measure the segregation [16], which can be detected by ultrasonic 
pulse velocity [13] and can be measured through image analysis [17] because the 
manufacture process can affect it [18]. There are numerical models for describing it [15] and 
also neural networks have been applied to analyse the phenomenon [13]. The supplementary 
materials can also affect the segregation [19]. 
     The most important required property of LWC is its compressive strength and its density. 
The compressive strength of LWC has great influence on its structural performance and is 
significantly affected by the composition —materials, the dosage of chemical and mineral 
admixtures, types of aggregate used, packing density and water to binder ratio (W/B) [20]. 
     Support-vector machines (SVMs) are a supervised learning model with associated 
learning algorithms developed by Cortes and Vapnik [21] used for classification and 
regression analysis. The technique appeared from the theory of statistical learning postulated 
by Vapnik and Chervonenkis [22], [23]. SVMs were introduced in 1992 and became popular 
when they obtained better results than neural networks in handwriting recognition using 
pixels as input data [21]. The technique transforms the input space into another space of 
higher dimension, in which the problem can be solved by means of an optimal hyperplane 
(of maximum margin). It performs extremely complex data transformations and then finds 
out how to separate the data according to the labels or defined outputs (Fig. 1). The technique 
has been used to solve different problems in engineering [24]–[26], used in normal-weight 
concrete [27], [28] as well as in LWAC [29]. 
 

 

Figure 1:    Concept of support vector machine classification. (Source: Figure adapted from 
Hariri-Ardebili and Pourkamali-Anaraki [24].) 

     The original proposal using SVM is to classify the points into two categories, but it is also 
extendable to n categories. In this study the classification of the compressive strength of 
LWAC using SVM is investigated, the points were classified into 6 different categories 
corresponding to compressive strength classification. 
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     The main objective using SVM is to take as an input a set of points (parameters of the 
LWAC design from the literature) in which each of them belongs to one of several possible 
categories (compressive strength category). An algorithm based on SVM builds a model 
capable of predicting to which category a new point belongs (using Matlab®). 

2  MATERIALS AND METHODOLOGY 

2.1  Experimental database 

In this research, 241 groups of test data of LWAC from the literature were collected [30]–
[38]. The concretes studied used different types of LWA: Argex®, Arlita Leca®, natural 
pumice stone, Slate®, Rthyolite®, oil palm shell and recycled LWA. 

2.1.1  Input variables: Mixture proportions 
The goal is to design a classifier from the training data that allows us to predict the 
classification of compressive strength for a set of materials properties and some quantities 
for the dosage. The inputs used were: 

 LWA dry density: Depending upon the source of material, the dry density of the 
aggregate from the literature ranges from 573 to 2650 kg/m3. 

 Amount of water: The water used to manufacture the concrete used as data, ranges 
from 85 to 287 litres per cubic meter. In this study, only the effective water is 
considered because the water absorption of the LWA varies depending on the 
aggregate pore structure [39] and the value differs if the test is carried out in water 
or in the mass of the concrete [10]. 

 Amount of cement: The LWACs of the study were manufactured with a range of 
150 to 640 kg in one cubic meter. 

 Lightweight aggregate: from 0 to 863 kg per cubic meter (from normal-weight 
concrete to LWAC). 

As seen in Fig. 2, the LWAC compressive strength does not present a linear trend because 
the LWAC used in this research had a wide range of results and input parameters (Fig. 2). 

2.1.2  Output variable: Compressive strength 
The compressive strength is a key issue but it is a random variable that can vary over the 
time, even in a single structure [40]. To enhance professional practice an accurate and 
appropriate classification of compressive concrete strength is required [41]. Literature reveals 
gaps and overlapping in compressive concrete strength classifications. In this study the 
classification proposed by Sojobi et al. [41] is used because it avoids gaps, vague 
classification and it is easily understood by the professionals (Table 1). 
     As can be observed in Fig. 2, the maximum class achieved for lightweight concrete used 
in the database is a high-strength (81.6 MPa) and the minimum is the low compressive 
strength (0.6 MPa). 

2.1.3  Supporting Vector Machine (SVM) 
As explained in the introductory section, a Support Vector Machine (SVM) is a 
discriminating classifier formally defined by a separation hyperplane. In other words, given 
the training data label (supervised learning), the algorithm produces an optimal hyperplane 
that categorizes the new examples. In the case of a two-dimensional space, this hyperplane 
is a line that divides space into two zones where the samples are located to one side or to the 
other of the line depending on their class. This is extendable to more dimensions. 
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Figure 2:    Variation of the properties used for SVM. Compressive strength of the concretes 
vs (a) Cement content; (b) LWA content; (c) LWA density; (d) W/c ratio. 

Table 1:  Classification used in the study according to Sojobi et al. [41]. 

Class 
Classification of concrete according to its compressive strength 
Type of concrete Subclasses Compressive strength (MPa) 

1 Low-strength 0–19
2 Normal-strength 20–39
3 Medium-strength Low 40–49
4  Medium 50–59
5  High 60–69
6 High-strength Low 70–84
7  Medium 85–99
8  High 100–119
9 Ultra-high strength Low 120–200

10  Medium 200–400
11  High 400–600
12  Very high 600–1000
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    The support vector machine is a generalization of a simple and intuitive classifier called 
the maximal margin classifier, which was introduced in Section 1. Though it is elegant and 
simple, this classifier cannot be applied to most data sets, since it requires that the classes be 
separable by a linear boundary. SVM is intended for the binary classification setting in which 
there are two classes, it was later extended to handle more than two classes. 
     To understand the classifier maximal margin, it is necessary to introduce the concept of 
an optimal separating hyperplane. In a p-dimensional space, a hyperplane is a flat affine 
subspace of dimension p-1. It is simple to visualize a hyperplane in two dimensions. 
However, as the number of dimensions increases, it becomes more difficult to visualize. Fig. 
3 shows an example of two-dimensional classification using the online application provided 
by LIBSVM [42]. 
 

 
(a) (b)

Figure 3:    Two-dimensional classification. (a) Two classes of observations are shown in 
blue and yellow; (b) An SVM applied to the samples on the left image. 

     As mentioned above, the support vector classifier is a natural approach for classification 
in the two-class setting if the boundary between the two classes is linear [43]. The linear 
support vector classifier can be represented by 

𝑓ሺ𝑥ሻ ൌ 𝛽ை ൅ ∑ 𝛼௜〈𝑥, 𝑥௜〉
௡
௜ୀଵ , (1) 

where there are n parameters αi, i=1,…, n one per training observation and 〈 x, xi 〉 is the inner 
product of two r-vectors, in this case, x and xi. To estimate the parameters αi,…,αn and βO, it 

is necessary to evaluate the ቀ
𝑛
2ቁ inner products 〈 xi, xi' 〉 between all pairs of training 

observations. Thus, to evaluate the function f(x) it is required to compute the inner product 
between the new point x and each of the training points xi. To summarize, the function is 
replaced with a generalization of the inner product of the form  

𝐾ሺ𝑥௜, 𝑥௜ᇱሻ, (2) 

where 𝐾 is some function that we will refer to as a kernel. A kernel is a function that 
quantifies the similarity of two observations. 
     Some different types of kernel used in SVM algorithms are: 

 The linear kernel. It uses Pearson correlation to quantify the similarity of two pairs of 
observations (eqn (3)) 
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𝐾ሺ𝑥௜, 𝑥௜ᇱሻ ൌ ∑ 𝑥௜௝ ∙ 𝑥௜ᇱ௝
௣
௝ୀଵ . (3) 

 Polynomial kernel. It is possible to replace each instance of eqn (3) with eqn (4), where 
d is the polynomial degree and  𝑑 ൐ 1. This kernel leads to a more flexible decision 
boundary. This is equivalent to adapting an SVM in a higher-dimensional space involving 
polynomials of degree d rather than in the original characteristic space 

𝐾ሺ𝑥௜, 𝑥௜ᇱሻ ൌ ൫1 ൅ ∑ 𝑥௜௝ ∙ 𝑥௜ᇱ௝
௣
௝ୀଵ ൯

ௗ
. (4) 

 Radial kernel. This kernel also matches samples in a higher-dimensional space but it can 
handle scenarios where the relationship between classes and attributes is not linear. This 
kernel takes the form given by eqn 5, where γ is a positive constant in a space of infinite 
dimensional characteristics 

𝐾ሺ𝑥௜, 𝑥௜ᇱሻ ൌ 𝑒𝑥𝑝 ቀെ𝛾 ∙ ∑ ൫𝑥௜௝ െ 𝑥௜ᇱ௝൯
ଶ௣

௝ୀଵ ቁ. (5) 

3  RESULTS AND DISCUSSION 
The prediction system is based on a standard C-parameterized margin, C-SVC [21] with 
Radial kernel [22]. Initially, the features are scaled to (0–1) range before passing them to the 
SVM, preserving the many values that are already 0 and maintaining matrix scarcity. With 
the scaled features, a model selection is conducted to boost the performance of the SVM by 
picking up the best set of parameters. As two parameters have to be selected (C regularization 
parameter and amplitude), a 2D grid-search is performed, with parameter values varying 
exponentially in powers of 2 (eqn (6)) 

𝐶 ∈ ሼ2௜:  𝑖 ∈ ሾെ7, 7ሿ ∩ ℤሽ, 𝛾 ∈ ሼ2௝:  𝑗 ∈ ሾെ7, 7ሿ ∩ ℤሽ. (6) 

     As previously mentioned in Section 2.1, the dataset was composed of 241 elements 
classified into 6 different types (according to Table 1). There are 12 possible classifications 
for compressive strength according to Table 1 but the database used for the research had a 
range of results from 0.6 MPa (Class 1) to 81.6 MPa (Class 6). The independent variables 
used were the input parameters presented in Section 2.1.1. 
     For each pair of parameters, a leave-one-out Cross-Validation training gives its accuracy 
estimation (success percentage in Table 2). Finally, the 2 parameters corresponding to the 
best accuracy estimation are selected. For the training tests, 85% (209 samples) of the 
samples were used, reserving the remaining 15% for the test (32 samples). 

Table 2:  Success percentage according the number of independent variables. 

 Independent variables
 2 variables 3 variables All 
Cement content × × × × 
Water content × × × × × 
LWA content  × × × × × 
LWA density  × × 
Success (%) 35.27 50.62 60.17 65.56 71.78 78.13 

 
     The success rate was calculated as the number of successes in the classification by 
comparing the actual classification and the classification predicted by the model. 
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     As can be seen in Table 2, when the input variables increase, higher success in the 
classification model was obtained. This trend is a common behaviour in concrete 
compressive strength modelling. A better knowledge of the parameters of the concrete dosage 
allows one to reduce the uncertainty in the prediction and to adjust better to the real result 
[44]. As can be seen in Table 2, with two independent variables – where the amount of water 
and cement in the concrete dosage are known (water to cement ratio shown in Fig. 2(d) – the 
model does not allow obtaining a high success percentage (35.27%). This fact is contrary to 
expectation, because w/c is one of the most important factors when dosing a concrete (only 
very low a/c ratios allow us to obtain concretes with very high resistance [45]). However, 
when the quantity of water and the quantity of LWA in the manufacture of concrete is known, 
it is possible to estimate with higher success percentage the LWAC strength class (60.17%). 
With 3 independent variables (Table 2), it is observed again that the quantity of cement in 
the LWAC dosage is not a decisive factor in the prediction of compressive strength 
classification. Considering the quantity of cement, the success rate for predicting the 
compressive strength class is 65.56% and considering the LWA density is reached the 
71.78% of success. Because of it, in LWAC, the LWA density has more influence in the 
prediction success than the quantity of cement used in the dosage when a prediction of 
compressive strength class is required. 
     The best model had a success of 78.125%, that is, 25 success in the classification of 32 in 
total used for the test (Fig. 4 shows the prediction vs real classification of the 32 data from 
the dataset used for the test). As can be seen in Fig. 4, there was a total success in the 
prediction of LWAC classified as category 1 (low compressive strength) and 6 (ultra-high 
compressive strength low). The worst classification can be seen in classification 5 (real 
compressive strength classification) because, as can be seen in Fig. 4, the model classified 
results as model 2 to 5. Further research is needed for increasing the success predicting the 
classification in the middle range of results (class 5) where lower success was observed due 
to the high variations in the dosage parameters that result in lower accurate prediction. 
 

(a) (b)

Figure 4:    Prediction vs real classification of the data. (a) Real and predicted classification; 
(b) Success number and percentage in the classification using the SVM model 
with four parameters as input variables and 32 results used for test. Green colour 
in the diagonal indicates success and red indicates errors. 
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4  CONCLUSIONS 
In this study, a prediction model of LWAC compressive strength was established by SVM. 
241 sample data collected from experimental tests were used to develop the SVM model to 
predict compressive strength. The input variables selected to develop the model were cement, 
water, LWA content and LWA dry density. The predicted compressive strengths from the 
developed SVM model matched well and can be potentially used to predict the compressive 
strength. However, there are ranges of compressive strength where the model does not 
present accurate results due to the variation of the LWAC properties. 
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