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ABSTRACT 
For studying transient heat conduction problems in the micro-nano scale, the standard heat diffusion 
equation is no longer applicable, and the time-dependent Boltzmann transport equation (BTE) needs to 
be solved. Although mesh-based numerical methods such as the finite element method (FEM) and the 
finite volume method (FVM) are often employed to solve the BTE, the collocation meshfree method 
has special advantages since it does not require numerical integration. In this work, the collocation 
meshfree method and the discrete ordinate method (DOM) are implemented to discretize the spatial 
and angular domains, respectively, while the explicit finite difference method (FDM) is used for 
advancing in time. Such a method is used to solve the transient BTE for a square domain with prescribed 
temperature and adiabatic boundary conditions. Our results are consistent with transient heat transfer 
problems solved by FVM approach. 
Keywords: transient Boltzmann transport equation, collocation meshfree method, discrete ordinate 
method, finite difference method, ballistic and diffusive regimes. 

1  INTRODUCTION 
In transient heat transfer problem, the heat diffusion equation is no longer valid for 
 small scale geometry and ballistic heat transfer regime, although for the diffusive heat 
transfer regime the results are acceptable. To solve this problem, the phonon BTE is still the 
state-of-the-art method [1]–[4]. For transient problems, there are some numerical methods to 
solve the BTE; e.g., FEM [5], [6], FDM [7], and FVM [8], [9]. Some of the previous works 
are reviewed as follows. 
     The transient phonon transport is considered in two-dimensional silicon film problems 
and was solved by Yilbas and Mansoor [10]. They used the FDM and an implicit scheme to 
solve the frequency-dependent BTE for a square domain. Cobos et al. analyzed geometry 
irradiated by photon beams by solving the time-dependent BTE with the time step given by 
a modified Courant–Friedrichs–Lewy condition [3]. Guo and Xu discretized the transient 
BTE with a second-order finite volume formulation and used the discrete unified gas kinetic 
scheme [11]. Joshi and Majumdar modeled the ballistic to diffusive phonon transport regimes 
by solving the equation of phonon radiative transfer for a 1-D geometry. This equation was 
solved by using the explicit upstream differencing method [12]. In 2015, Hamian et al. [5] 
used the commercial software COMSOL to study a square domain and solved the BTE by 
using FEM and DOM. 
     In our previous work [4], we applied the collocation meshfree method and the DOM to 
solve the steady state gray BTE. This work is built upon the work in Zahiri et al. [4], in which 
we used a combination of the FDM, the collocation meshfree method and the DOM to 
analyze transient heat conduction problems in the sub-continuum scale for a wide range of 
Knudsen numbers (Kn). These simulations are for 1-D and 2-D geometries and are 
implemented by discretizing the time dependent gray BTE. 
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2  BOUNDARY CONDITIONS AND GOVERNING EQUATION 
The time-dependent form of the gray BTE for phonon transport without any energy source is [5] 
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Here e(x,s,t) is the phonon energy density and is a function of position x, direction of group 

velocity s and time t. The group velocity vector is denoted by v, gv  v and  is the 

divergence operator [4]. 
     By using the Bhatnagar–Gross–Krook model, the right side of eqn (1) is simplified as 
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     In addition, two different boundary conditions are prescribed in this work: the first is the 

prescribed temperature boundary (Tb) condition: ( , ) ( )
4
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directions; i.e., s such that 0 s n , where n is the unit normal vector of the boundary and C is 
the specific heat [4]. The second is the specular (adiabatic) boundary condition in which each 
incident phonon is reflected such that ( , ) ( , )re ex s x s  for incoming directions such that

0 s n , where (2 ) rs s s n n  [4], [12]. 

3  NUMERICAL METHOD 
The finite difference and collocation meshfree methods are described here to solve the gray BTE 
for temporal and spatial discretizations, respectively. The collocation meshfree method does not 
need a mesh and instead, field nodes scattered in the domain are used to interpolate the solution. 
Also for angular discretization we use the discrete ordinate method (DOM) [13].  

     To solve the transient problem, it is possible to use the FDM to discretize the term 
e
t
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of eqn (1) as [14]: 
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where 1ne  is the data for the next time step n+1 when n is in the present time step and t is 
the time step size. For the explicit Euler method, all other variables in the equation should be 
in the time step n. Therefore, using eqns (1) and (2) yields 
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To discretize the angular domain, the DOM is used and each hemisphere is divided by 
4N N N     solid angles where  is the polar angle and   is the azimuthal angle [4], 

[13].  
     To perform spatial discretization by a meshfree method, interpolation methods are used. 
The radial point interpolation method (RPIM) is selected to make shape functions [14], [15]. 
For a specific direction sj, the energy density field to be solved is given by 
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in the support domain [4]. The derivatives of e(x) are computed as 
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and e y  can be obtained analogously. The accuracy of interpolation depends on the size 

of the support domain and how many nodes are selected therein [16]. By using eqns (3) and 
(4), the final formula of BTE for 2-D time-dependent collocation meshfree method is 
obtained [4]:   
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where ( , )j jx jys ss  and 0 0 ( )i ie e x . To satisfy the boundary conditions, it is just required 

to put calculated ( , )b je x s from the previous section equations for the phonon energy density 

for corresponding node and direction in the boundary [4].   

4  RESULTS 
In this section, we solve a few transient sample problems in a square domain [0, ] [0, ]L L  with 

the proposed method and discuss the results. We will study two sets of boundary conditions: 

a) For the first set of examples, we prescribe on the left boundary (x = 0) the condition  
T = T2, for the right boundary (x = L) the condition T = T1, and top and bottom boundaries 
(y = 0 and y = L) the specular adiabatic boundary condition. The solution is expected to 
only depend on x and t.  

b) In the second set of examples, the left and right boundaries are the same as in the first set, 
while for the top and bottom boundaries we assume T = T1; i.e., the same temperature as 
the right boundary. 

     Besides the proposed method (denoted Meshfree in the figures), we will also compare a 
method where the spatial discretization is with a cell-centered finite volume method instead, 
denoted as FVM. 
     We will compare the results with different Knudsen numbers /Kn l L , where l is mean 

free path and L is the domain side length. Also the non-dimensional length ( * /x x L , 
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* /y y L ) and the non-dimensional temperature (    *
1 2 1/T T T T T   ) are calculated for 

different dimensionless time ( * /t t  ) for verification. According to a grid study given by 
Zahiri et al. [4], the results for 21 × 21 and 41 × 41 nodes have reasonable agreement with FEM 
results [5] and, in the diffusive regime, with the analytic solution of Fourier heat conduction. 
     We generally plot the non-dimensional temperature distribution at the midline (y* = 0.5). 
In case a), we will study Kn values between 0.01 and 100, representing the diffusive to 
ballistic phonon transport regimes. The number of solid angle divisions (N) is 256 for the 
upper hemisphere, and the lower hemisphere is assumed to be symmetric to the upper 
hemisphere.  
     The results for case a) are shown in Fig. 1 and Fig. 2, with Kn = 0.01 and 100, respectively. 
In Fig. 1, the results from the analytical solution of Fourier heat transfer are also plotted for 
verification purpose. It is clear that the meshfree method agrees better with the Fourier heat 
conduction solution than FVM with the same number of nodes and discretized solid angles.   
     Although our transient results for different time steps do not match well with those of  
the FVM, the long-time solution, meaning when the results no longer change with time. Both 
the FVM and the meshfree method are well consistent with the analytical solution of the heat 
diffusion equation. 
     In Fig. 2, the distribution of non-dimensional temperature for Kn = 100 and for  
different time steps are presented. The FEM and meshfree method results for Kn = 100 for 
different time steps are in better agreement than Kn = 0.01. Both the steady state temperature 
solution and the long-time results for meshfree and FVM demonstrate temperature jumps at 
the right and left boundaries. This phenomenon is known as ballistic phonon transport regime.  
 

 

Figure 1:    Temperature distribution along the midline for specular adiabatic boundary 
conditions for Kn = 0.01. 
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Figure 2:    Temperature distribution along the midline for specular adiabatic boundary 
conditions for Kn = 100. 

 
     For case b) we consider prescribed temperature boundary conditions in all boundaries of 
the square domain and study the transient heat conduction in the following. The left boundary 
is at a higher temperature, while the other sides have a lower temperature. The results are 
illustrated in Figs 3 and 4. We compared the results with our results obtained from the FVM. 
Also, we solved the problem for different time steps, and yet they do not have exactly the 
same curves.  
     In the results for steady state and a long-time, overlapping is observed in meshfree results. 
However, there are oscillations in steady state when these oscillations can be seen also in the 
meshfree results for a long-time because of ray effects but not in FVM. It means that the ray 
effects due to the finite angular discretization for the problem solved by using meshfree method 
with the same number of nodes and same number of discretized angles is more visible than in 
FVM. 
     In Fig. 4 results for Kn = 1 are presented. The oscillations are smaller than Kn = 10 and this 
figure and Fig. 3 show that the ray effects for higher Kn has a greater effect in comparison to 
smaller Kn. However, the results for the long-time have less temperature jump than the results 
from higher Kn in the boundaries.  
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Figure 3:  Results for Kn = 10 for constant temperature boundary conditions. 

 

 

Figure 4:  Results for Kn = 1 for constant temperature boundary conditions. 
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5  CONCLUSION 
In this work, transient heat transfer problems in sub-continuum geometries have been studied by 
a numerical method combining the FDM, collocation meshfree method and the DOM due to the 
necessity of time, spatial, and angular discretizations to solve the time-dependent phonon gray 
BTE. The results for higher Kn numbers demonstrate reasonable agreement with our FVM 
results for time steps prior to convergence results for a long-time. Also, different transient heat 
transfer regimes from ballistic to diffusion have been studied in this work. We found that the 
results for meshfree and FVM at the same number of field nodes and discretized solid angles for 
high Kn numbers agree well, although for low Kn numbers, meshfree has better agreement than 
the FVM with analytical solution of Fourier heat transfer equation results in the diffusive regime. 
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