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Abstract 

We analyze the problem of the capacitive measurement of the height of a liquid 
in a cylindrical storage tank whose outer structure is connected to the ground. 
The system is excited electrically by applying a time varying voltage between a 
disk shaped electrode (located at the centre of the tank) and the external tank 
wall. The theoretical solution for the pertinent Maxwell’s equations is derived for 
a liquid characterized by a given real permittivity εL and zero conductivity. The 
space above the liquid is air. The problem is reduced to the solution of 
the Laplace equation for a multiply connected region. The validity of the 
analytical solution is checked against a numerical based on an equivalent circuit 
for the system. The case where the liquid is considered as having a given 
conductivity is also considered. Finally, we include a discussion concerning the 
application of this type of instrumentation in the case of storage tanks used in 
the petroleum industry.  
Keywords:  inductive measurements, numerical procedures, oil production. 

1 Introduction 

The present paper is concerned with determining the level of liquid inside a 
cylindrical metallic tank, by measuring the electrical impedance between 
a metallic electrode located at the center of the tank. The geometry of the system 
considered is shown on Figure 1(a). The tank (radius a), is connected to ground. 
Inside the tank there is a liquid with relative real permittivity εL up to a height H. 
The liquid is assumed to have zero conductivity. The volume over the liquid is 
characterized as having a real permittivity εS and zero conductivity. A potential 
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V(t) is applied to a metal disk (with radius b and thickness d) located at the 
center of the tank at a distance z0 from the top.    
 

                                  0V(t) V exp( j t)                                               (1) 
 

where V0 is the amplitude of the applied voltage, and ω is the excitation angular 
frequency. It is understood that the applied physical voltage corresponds to the 
real part of V(t), and that the essence of the present work corresponds to 
the determination of the real part of the current I(t) that will flow between the 
central electrode and ground. We determine the dependence of this current on the 
height of the liquid in the tank, and its dependence on the liquid properties.  
     In the case of tanks used in the oil industry (in particular for crude oil), the 
level of liquids inside a tank is generally determined by simple mechanical 
systems (a float connected to an external indicator), although some systems 
measure the capacitance between an internal electrode and the tank walls 
(Schuler [1]). Figure 1(a) shows the geometry of the system considered in this 
paper, while Figures 1(b) and 1(c) show the electrode arrangement for 
discontinuous and continuous level measurements.  

 

Figure 1: (a) Geometry of the system considered in this paper, 
(b) discontinuous level measurements and (c) continuous 
measurement with electrode placed in the liquid. 

     In this paper we determine analytically the admittance between the internal 
cylindrical electrode and the tank wall. We compare this solution with a 
numerical finite difference solution.  

 

2 Potential distribution 

For convenience, the structure to be analyzed is inverted (as shown in figure 2). 
We consider a range of frequencies where quasi-static Maxwell equations can be 
applied. They are:    
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0Zone 1 (z z )  
1E 0 

 
 (2) 

 
1E 0 

 
 (3) 

0 1Zone 2 (z z z )   
2E 0 

 
 (4) 

 
2E 0 

 
 (5) 

1Zone 3 (z z L)   
3E 0 

 
 (6) 

 
3E 0 

 
 (7) 

 
     The solution to equations (2) to (7) can be found in terms of three scalar 
potentials Φ1, Φ2,and Φ3, that must satisfy the corresponding Laplace equations: 
 

2
1 0( , z) 0 for z z    


                                      (8) 

2
2 1 0( , z) 0 for z z z     


                                 (9) 

2
3 1( , z) 0 for z z    


                                   (10) 

 
     Zone 1 is separated from zone 2, by the metal disk of radius b and thickness d 
(d~0), situated at z=z0 . The solutions of equations (8), (9) and (10) are (Jackson 
[2]): 

1 m 0 m m
m

( ,z) A J (k )sinh(k z)                                          (11) 

 2 0 m m m m m
m

( ,z) J (k ) B exp(k z) C exp( k z)                         (12) 

3 m 0 m m
m

( ,z) D J (k )sinh(k (L z))                                    (13) 

 

where J0 is the Bessel function of the first kind and order 0, and km are the m 
discrete roots of J0=0 – Abramowitz and Stegun [3]. The constants Am, Bm, Cm, 
and Dm are to be evaluated by the following boundary conditions: 

 

1,2,3 1,2,3

1

3

(a, z) 0 (0,z) finite

( ,0) 0 (20)

( ,L) 0

  

  
  

 
     Additional conditions are required by the continuity of the potentials at z=z1, 
and at z=z0 and continuity of the normal electrical density components at z1: 

2 1 3 1 1 0 2 0

32
L S 3

z1 z1

( , z ) ( , z )0 ( , z ) ( , z )

( , L) 0 (21)
z z

         


     

 
  

 
     An additional equation is required corresponding to the boundary condition at 
z0 (on the electrode).  
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     As we discuss in detail in the next section, we have solved the problem via 
two different approaches.  
     Approach A: we assume that the potential V(ρ, zo ) the plane z=z0 is known. 
The capacitance is reduced to the solution of: 

 

0 0( , z ) V( ,z )                                           (22) 
 

     This problem is simpler as we have separated two different regions (above 
and below the electrode plane), and the corresponding Laplace equation 
solutions are given in most basic electromagnetism textbooks like Stratton [4] 
and Smythe [5]. 
     Approach B: we assume that the surface charge density of the electrode in 
given by a known function η(ρ) and the corresponding equation for the normal 
components of the electrical density is: 

 

1 2
L

z z0

( )
z z 

         
                              (23) 

 

     In the following section we determine V(ρ, zo) and η(ρ) by means of a 
variational scheme. 

3 Capacitance calculations 

Following Collin [6] we find the capacitance of the system in accordance to two 
different schemes: a)  minimizing the capacitance expressed in terms of the 
electrical energy stored and thus determine V(ρ, zo), b) determining η(ρ) using 
Green’s functions.  

3.1 Capacitance calculation according to scheme (a) 

We consider first a finite thickness electrode as shown in Figure 2. The general 
solution for Laplace equation in zone 4 is: 
 

 

ln( / a)
where Vx0 0 0 ln(b / a)

a J (k ) b Y (k ) c exp(k z) d exp( k z)x n n n n n n n n0 0n


      

         
      (24) 

 

Φ0 represents the limiting trivial solution when there are no variations in z: 
 

1 0 0


 
  

 
 
 

                                                  (25) 

 

kn are the values that satisfy the boundary conditions: 
 

(b, z) 0 (a, z) 0x0                                       (26) 
 

Substitution of these conditions in equation (25) yields: 
 

 a J (k a) J (k b) / Y (k a) 0n n n n0 0 0                   (27) 
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Figure 2: Tank details when the electrode thickness (d≠0) is considered. 

     Thus the kn are the roots of: 
 

J (k a)Y (k b) J (k b)Y (k a) 0n n n n0 0 0 0                     (28) 
 

In the limit d→0 then z →z0 and we rewrite Eq. (24) as: 
 

 a J (k ) J (k b) / Y (k b) Y (k ) V( , z )n n n n n0 0 0 0 0 0n
             (29) 

 

Now we determine the Am as functions of the an, formally writing: 
 

A J (k ) sinh(k z ) V for bm m m0 0 0m
                      (30) 

A J (k ) sinh(k z ) ( , z ) for bm m m0 0 0m
                       (31) 

 

In view of the orthogonality of the Bessel functions we can obtain: 
 

A m a ( m )m n n0 n

2J (k b) Vm0 0m0 2 2 2
a J (k a) sinh(k z )k (ln(a / b))m m m1 0

4J (k b)m0mn 2 2 2 2
a J (k a) sinh(k z )(k k )Y (k b)m m m n n1 0 0

   

 

 
 

  (32) 

 
 

where n corresponds to the number of each root of equation (28).  
     Under the quasi static approximation used |E|2=(δΦ/δρ)2+(δΦ/δz)2, so that the 
total electrical energy stored in the tank will be the sum of the energies W1,W2, 
and W3 corresponding to each region: 
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2 2z a0 1 1W dz ds1 0 0 z

 
     

 

     
         

                         (33) 

 

 
2 2z a1 2 2W dz ds2 z 0 z0

 
     

 

     
         

                           (34) 

 
 

2 2
L a 3 3W dz dL3 z 0 z1

 
     

 

     
    
     

                           (35) 

 

Replacing the expressions for the φ’s we obtain: 
 

 2 2 2 2 2 2LW a A k [J J ]sinh(2k z ) (J J )k zm m m m1 1 2 0 1 2 0m2


                         (36) 

 2
m

2
2 m
m

2 2 2LW 2a k [J J ] B C (z z )m m2 1 2 1 0m2

2
a k 2k z 2k z2k z 2k zm mm m2 2 2 2 2L 0 01 12a k [J J ][B (e e ) C (e e )m m1 2m2 2




  

  
   

  
 
  

(37) 

 
 

 2 2 2 2 2 2 2LW D a k [J J ]sinh(2k (L z ))(1 / 4) (J J )k (L z )(1 / 2)m m m m3 1 2 1 1 2 1m2


         (38) 

 
 

We define the relationship of the constants Bm=δBAm, Cm=δCAm, Dm=δDAm, in 
terms of the different deltas that are then determined from the boundary 
conditions. We then obtain: 
 
 

 sinh(k z ) exp( k z ) cosh[k (L z )] sinh[k (L z )] /m m m mB 0 1 1 1                        (39) 

 

 sinh(k z ) exp( k z ) cosh[k (L z )] sinh[k (L z )] /m m m mC 0 1 1 1                  (40) 

 
2 sinh(k z ) /mD 0                                               (41) 

 
 

where Δ is given by: 
 
 

2 cosh[k (L z )]sinh[k (z z )] 2 sinh[k (L z )]cosh[k (z z )]m m m m1 0 1 1 0 1          (42) 
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We can be written as: 2 2
e S m m m

m

W (1/ 2) a A g k    , where gm  is defined by: 

 
 

4gm
2 2(J J )1 2

2k z 2k z2k z 2k zm mm m2 2 20 01 1[(sinh(2 k z ) sinh[2k (L z )] 2 [e e ] 2 [e e ]m mD B0 1 C

2 22(J J )1 2 k z k (L z ) 4 k (z z )m m mB D B0 1 C 1 02 2(J J )1 2




  
         


        



(43) 
 

We is now minimized with respect to the an’s (included in the Am’s). This process 
is equivalent to minimizing the capacitance since: 
  

2(1 / 2)CVW Ce 0 0
a a an n n


   




 

 system of n equations     (44) 

Figure 3 shows the results for the capacitance of electrode b as a function of the 
radius (εL= εS). As the number of constants is increased the capacitance tends to 
a limiting correct value.  

3.2 Capacitance calculation by means of Green’s function 

The Green function for a unit point charge located at (ρ1, z1, φ1) is the solution 
(Jackson [2]), of the equation: 

 2
1 1 1(1 / ) (z zG(r, r ) ) ( ) / (2 )         

 
  (45) 

When the center electrode is thin, the presence of a point charge is equivalent to 
a boundary condition given by: 

2 1
1

G G
( ) / (2 )

z z
 

           
              (46) 

The Green function will have the values: G1, G2 and G3, for the different tank 
regions. They are obtained from equations analogous to equations (14), (15), and 
(16), when the boundary conditions (equation (18)) are applied. The following 
expressions for the constants Am, Bm, Cm and Dm are found: 
 

 
m 1 0 m 1 0 m 1

m
m 1 m 1 m 1

A
cosh[k (z z )] tanh[k (z z )] t anh[k (L z )]

F
cosh[k z ] tanh[k z ] tanh[k (L z )]

    


         (47) 

where 0 n)

2 2
s m 1 m

J (k
F

a k J (k a)



 

 

 
 

m 0 m 1 m 1
m

m 1 m 1 m 1

sinh(k z )exp( k z ) tanh[k (L z )]
B F

2cosh[k z ] tanh[k z ] tanh[k (L z )]

   
 

  
    (48) 
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 
 

m 0 m 1 m 1
m

m 1 m 1 m 1

sinh(k z )exp( k z ) tanh[k (L z )]
C F

2cosh[k z ] tanh[k z ] tanh[k (L z )]

  


  
                   (49) 

 

 
m 0

m
m 1 m 1 m 1 m 1

Fsinh(k z )
D

cosh[k (z )]cosh[k (L z )] tanh[k z ] tanh[k (L z )]




   
(50) 

 

 

Figure 3: Capacitance/εs vs. internal electrode diameter. The insert shows the 
dependence of the results as a function of the number of constants 
used. As the number of constants increases the capacitance tends to 
a constant value. 

     The capacitance is then given by: 
 

2
S 1 m

m2 3 2
m m 1 m

J (k b)4a
H

C b (k a) J (k a)

     
          (51) 

m 0 m 1 0 m 1 m 1 0
m

m 1 m 1 m 1

sinh(k z ) sinh[k (z z ) tanh[k (L z )]cosh[k (z z )
H

sinh[k z ] cosh[k z ] tanh[k (L z )]

     
     

 

 
     In the following section we present the results of the capacitance of the tank 
for different radii of the central electrode and the capacitance measured as a 
function of liquid content. In both cases we compare the results of the theory 
discussed with the numerical results obtained by replacing each elementary 

# of constants used
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volume element by an R-C circuit, and considering 29x29 nodes. The equivalent 
circuit used is the low frequency approximation of Kron model [7]. 

3.3 Results  

In this section we present in Figure 4, the theoretical results of the calculation of 
the capacitance measured at the central electrode as a function of the radius 
of the central electrode.  
     In Figure 5 we show the behavior of the capacitance of the tank as the height 
of the liquid is increased. As in the case of the capacitance dependence on the 
radius of the central electrode we find excellent agreement between our 
theoretical solutions and the numerical results. 
 

 

Figure 4: Capacitance vs. radius of the central electrode (δ=1, 
x0=0.1). ── Numerical solution (29x29 nodes). ● Solution where 
the stored energy is minimized (5 constants). □ Green function 
solution with uniform charge density at the central electrode. 

4 Conclusions 

From the derived theoretical results we proved how the liquid height in a tank 
can be determined without using a vertical electrode. For the case where we 
considered a constant surface charge the results derived were precise. Of course 
in a real measuring condition the effect of temperature variations and vibrations 
should be considered.  
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     The solution based on a Green function approach is easily changed so as to 
consider the case where we deal with a conductive liquid, just as the circuital 
model used in the numerical approach can be easily modified. In the case of the 
minimization of the stored energy, it is not clear if it can be extended to the case 
of a conductive liquid.  
 

 

Figure 5: Capacitance vs. height of the liquid in the tank (δ=80, z0=0.6, 
b=0.362). ── Numerical solution (29x29 nodes). ● Solution where 
the stored energy is minimized (5 constants). □ Green function 
solution with uniform charge density at the central electrode. 

     The details of the numerical solution are not included in the present paper. 
They are very similar to the discussion of the paper by Callarotti and Páez [8].  
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