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Abstract

The open computational fluid dynamics (CFD) code called Gerris is very popular
recently for its grid discretising strategy using quad/octree. It is available to
numerically simulate a large range of problems in fluid domains and the simulation
preprocess of grid is easy to represent the complex solid boundary by means of
volume of fluid (VOF) approach.

Two classical two-dimensional (2D) bluff and streamlined bodies, namely circle
cylinder and airfoil NACA2414, are simulated firstly with various Reynolds
numbers and grid resolutions. The DNS results in this paper are validated based
on the criteria of the force coefficient convergence with various grid levels. The
three-dimensional (3D) floating sphere and series 60 ship hull are also simulated
including the water free surface and induced wave with various Froude numbers
and the results are validated employing the same previous processes.

The results show that the force coefficients acted on the bluff bodies without
water surface cannot easily converge to steady ones even with fine grids of high
resolutions. Comparatively, the force coefficient of the streamlined body without
water free surface is easier to converge even with turbulent flow. The results of 3D
computational cases with water free surface show that the force coefficients would
converge to desirable ones with grid level 8 and 9 both for the series 60 ship hull
and the floating sphere, which are bluff body and streamlined body, respectively.
Generally, Gerris is very suitable for calculating the cases with water free surface
with relative low grid resolution.
Keywords: computational fluid dynamics, Gerris, direct numerical simulation,
volume of fluid, bluff body, streamlined body.
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1 Introduction

Gerris is one of computer codes in the field of computational fluid dynamics
(CFD). It was released as free and open-source software, subjected to the
requirements of the GNU General Public License (GPL) [1] and it is very popular
recently for its outstanding peculiarities for solving a large scope of scientific
and engineering problems involving fluid. Gerris solves the Navier–Stokes (NS)
equations in two or three dimensions, allowing to model wind erosion [2], free
water surface (like as shallow water wave [3, 4], solitary wave [5, 6] and tsunami
[7, 8]), industrial fluids [9], droplets [10], even Bingham plastic fluid [11] and
granular column [12, 13], etc.

Generally, the flow flied is mathematically modelled by partial differential
equations, i.e., NS equations and they cannot be solved analytically for a majority
of the flow problems. However, the numerical solutions can be obtained with
the advent of the modern computers. Several methods can be used to provide
numerical solutions to partial differential equations, i.e.,finite differences, finite
volumes and finite elements, and Gerris belongs to the finite volumes family of
CFD models [1].

Most models use meshes which are either structured (Cartesian or curvilinear
grids) or unstructured (triangular, tetrahedral, etc.). Gerris is quite different on
this respect: it implements a deal between structured and unstructured meshes by
using a tree data structure [1, 10, 14], allowing to refine locally (and dynamically)
the finite-volume description of the pressure and velocity fields. Indeed the grid
evolves in the course of a given simulation owing to criteria defined by the user
(e.g., dynamic refinement of the grid in the vicinity of sharp gradients). Gerris
mainly aims at DNS and the fluid flow turbulence characteristics can be well
simulated and they were well agreed with experiments around a research vessel
[15].

Gerris can predict time evolutions of flow velocities, pressures and free surfaces
with appreciable precisions. However, it is not the case to predict the force
coefficient on the solid bodies embedded in the flow fields. The reason is that the
quadtree/actree grid is employed in this simulation code to approximate the solid
boundaries and it is not enough precise to represent the bluff body boundaries,
even with a large number of numerical grids.

In this paper, Gerris code is employed to predict the force coefficients on the
bluff or streamlined bodies with or without water free surface and the criteria
of force coefficient convergence is employed to determine the qualities of the
simulation results. The remaining of this paper is organized as follows. The
numerical methods including governing equations, solver scheme and grid strategy
are represented briefly in section 2. The numerical simulation results are shown
in section 3 and the results containing the flow fields and the force coefficient
on the bluff body and the streamlined body with or without free water surface.
The 2D circular cylinder and the airfoil NACA2414 are simulated without water
surface, and the 3D floating sphere and series 60 ship hull are computed with water
surface. The conclusions of all simulated cases are drawn in section 4 and some
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useful suggestions are listed for the using of Gerris involving the forces on the
solid bodies in the flow field with direct numerical simulation.

2 Numerical method

The numerical model was setup using the Gerris Flow Solver [1] and it is a 2D/3D
equation solver designed to solve the continuity equation and the incompressible
momentum equation, i.e., NS equations, like as

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ
(
∇u+∇Tu

))
, (2)

where u is the velocity vector, p the pressure, ρ the fluid density and µ the dynamic
viscosity of the fluid. Among its many features, the code is based around a 2D
quadtree or 3D octree finite-volume discretisation of the NS equations [1, 10, 14].
The quadtree or octree mesh notably allows easy handling of non-uniformly
refined meshes. Mesh refinement is adaptive in space and in time and can be setup
using geometrical criteria as well as criteria based on the computed quantities.

As mentioned above, the finite volume method is used to solve the set of
equations of the continuity equation and the incompressible NS equations. The
adaptive grid technique is used in the computation, and the domain is spatially
discreted using cubic finite volumes organised hierarchically as an quadtree/octree.
The projection method and multi-grid method are used to solve the pressure
equation. The convective term is discreted with second order upwind schemes, and
the volume of fluid (VOF) method is applied to treat free surface boundaries [1].

A 2D example of spatial discretisation and the corresponding tree representation
is represented here, as shown in Figure 1. The length of a finite volume (cell) edge
is denoted by h. Each cell may be the parent of up to four children. The root cell is
the base of the tree and a leaf cell is a cell without any child. The level of a cell is
defined by starting from zero for the root cell and by adding one every time a group
of four descendant children is added. Each cell C has a direct neighbour at the same
level in each direction d, noted Nd. Each of these neighbours is accessed through
a face of the cell, noted Cd. In order to handle embedded solid boundaries, we also
define mixed cells which are cut by a solid boundary. The primitive variables of
the NS equations (velocity u and pressure p) are all defined at the centre of the
cells.

3 Numerical results

The classical 2D cylinder and airfoil NACA2414 flows are numerically simulated
with DNS to test the precisions of the Gerris code and the relationship between the
force coefficient convergence and the grid resolutions. Gerris uses the concept of
grid box in the preprocess and the flow domains are combined with certain boxes
connected by edges. The fully computational grids for the cylinder and the airfoil
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Figure 1: Quadtree discretisation (left) and corresponding logical structure (right).

are shown in Figure 2. The whole computational domain has eight boxes and the
grids are adaptive just as described below and they are visually shown in Figure 2
of (a) cylinder and (b) airfoil, respectively, after 10 nondimensional time.

(a) Cylinder

(b) Airfoil NACA2414

Figure 2: Adaptive grid of the computational domain.

The adaptive grid is applied in this computation. The adaptive refinement
strategy includes two steps. In the first step, all the leaf cells which satisfy a given
criterion are refined. In a second step, we consider the parent cells of all the leaf
cells. All of these cells which satisfy the refinement criterion are refined and which
do not satisfy the refinement criterion would be coarsened. The criterion is based
on the norm of the local vorticity vector, like as

h‖∇u‖
max‖u‖

> τ, (3)

where h is the minimum of the grid size and τ is the threshold value of refinement.
similarly, the 3D computational grids of the series 60 ship hull and the floating

sphere are shown in Figures 3 and 4, respectively. Two plane grids, horizontal plane
coinciding with water free surface and vertical plane in the symmetry boundary, are
presented after 8 nondimensional time. And again, the adaptive grids are clearly
shown according to eqn (3).
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(a) Horizontal (b) Vertical

Figure 3: Adaptive grid of the ship hull.

(a) Horizontal (b) Vertical

Figure 4: Adaptive grid of the floating sphere.

3.1 Force variation and its convergence of 2D

For 2D cylinder and airfoil, the computational cases are carried out with Reynolds
number Re = 100, Re = 1000, Re = 1× 104 and Re = 1× 105. The Reynolds
number is defined as

Re =
UL

ν
, (4)

where U is the inlet velocity of the fluid, L is the characteristic length of the object,
which is the diameter for cylinder and the chord length for airfoil, ν is the viscosity
of the fluid. In this paper, all parameters are nondimensional and the inlet velocity
is uniform and equal to 1, and the characteristic lengths are 0.0625 for cylinder
and 1 for airfoil. The values of viscosity are adjusted to meet different Reynolds
numbers for various computational cases. All input values are nondimensional and
it is easy for us to analysis the results based on certain nondimensional numbers,
like as Reynolds number, lift and drag coefficients, etc.

The pressure fields and the vorticity fields are shown in Figures 5(a) and 6(a),
Figures 5(b) and 6(b) with Reynolds number 100 and grid level 7, for cylinder and
airfoil, respectively.

In Figure 6(a), the well-known Karman vortex street is generated and it is a very
classical case for CFD. But the vortex street is not visual for the streamline body,
e.g., the airfoil, with Reynolds number 100 in Figure 6(b). In this paper, the vortex
street is not the focus to discuss. However, the various grid levels are calculated to
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(a) Cylinder (b) Airfoil NACA2414

Figure 5: Pressure at Re = 100 with grid level 7.

(a) Cylinder (b) Airfoil NACA2414

Figure 6: Vorticity at Re = 100 with grid level 7.
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(b) Airfoil NACA2414

Figure 7: Drag force coefficient variations with nondimensional time atRe = 100.
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(b) Airfoil NACA2414

Figure 8: The drag force coefficient variations with time at Re = 1000.

test the convergence of the results and how to judge the convergence is our main
emphasis.

Three grid levels Lg are calculated, e.g., Lg = 7, 8 and 9 for various Reynolds
numbers mentioned above. The drag force coefficients are convergent with three
different grid resolutions for both cylinder and airfoil flow fields, as shown in
Figure 7, respectively. For cylinder with Re = 100, the drag coefficient is about
1.57, which is very close to the other’s computational and experimental results
[16].

The cylinder case has longer time convergent process and this case takes about
7 nondimensional time and after then a little fluctuation occurs. And the frequency
of this fluctuation is coincident with that of the shedding of the vortex street.
The shedding of the vortex street means that the flow field of the cylinder with
Re = 100 turns into turbulent status and the grid level 7 is enough for its
convergence. The minimum grid size can be evaluated by

hm =
1

2L
=

1

27
=

1

128
= 0.0078. (5)

For the airfoil case, it only takes about 0.5 nondimensional time to convergent
and the force coefficient has no fluctuation. This means that the flow field of the
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(b) Airfoil NACA2414

Figure 9: The drag force coefficient variations with time at Re = 1× 104.

airfoil with Re = 100 is laminar and the grid level 7 is enough for its convergence
of both for velocity and pressure. The value of the drag coefficient is close to the
other’s computational result [17].

The drag force convergent processes with three different grid resolutions are
shown in Figure 8 for both (a) cylinder and (b) airfoil with Re = 1000. The fields
of pressure and vorticity are not presented for the limitation of the paper length.

As shown in Figure 8, the drag coefficients of cylinder have much differences
with different grid resolutions. So it means that the grid level even 9 is not enough
for the cylinder case to get the force coefficient convergence. But for airfoil case,
the drag coefficient is convergent even for grid level 7, for three grid levels reach
the same value after 0.5 seconds calculation.

The minimum grid size for grid level 9 is about

hm =
1

2L
=

1

29
=

1

512
= 0.0020. (6)

For cylinder case, grid level 9 is suitable Reynolds number approximateRe = 500,
which is equal to 1/hm and it is not enough for Re = 1000. But for airfoil case,
the grid level 9 is good for its convergence of flow fields and force coefficients.
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In Figure 8(b), the drag coefficient has slight fluctuation because the flow field
turns into turbulent status and the shedding of vortex exists.

The cases with Re = 1 × 104 are the same as that with Re = 1000 for both
cylinder and airfoil, as shown in Figure 9. However, there are more fluctuations
because the turbulence will be more violent with higher Reynolds number.

But for the cases of both cylinder and airfoil, the drag coefficient would not
convergent to stable values with Re = 1 × 105, as shown in Figure 10. The
amplitudes of the fluctuations are so violent that the drag coefficients can not reflect
the true tendency of convergence. Under this Reynolds number, the drag force
convergence is hard to obtain, even for finer grid resolution, e.g., the minimum
grid is about 0.002, for streamlined object. In order to gain ideal results, finer grid
is required to calculate. And the minimum grid is of the order of magnitude of
the reciprocal of the Reynolds number, this is, hm = 1/Re for cylinder case. For
airfoil case, coarser grid is enough to obtain convergence results and the reliability
of the results need different grid resolution to test and compare.
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Figure 10: The drag force coefficient variations with time at Re = 1× 105.
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3.2 3D computational results with free surface

For 3D cases with water free surface, the bluff body is a floating sphere with half
of it submerging into the water and the streamlined body is the series 60 ship hull.
A few results are presented in this paper for the limited length of the paper.

The drag force variations with time evolving is shown in Figure 11(a) with grid
levels 8 and 9. The two grid level results show fair agreement and this means that
the fluid field is convergent to a ideal one. The result of floating sphere is similar
but the fluctuation is more violent for its bluff body, as shown in Figure 11(b).
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Figure 11: Drag force coefficient variations with different grid levels.

Moreover, the wave pattern in Figure 12 of ship hull is conformal with the
literature ones [18, 19]. For the streamlined floating body, e.g., the series 60 ship
hull, the beautiful wave pattern is formed and the wave angle is not change with
the time evolving. Therefore, the wave field can be regarded as steady one for
streamlined floating body. But for bluff floating body, e.g., floating sphere, the
wave pattern is not steady one, as shown in Figure 13 and so the drag force would
present fluctuation, as shown in Figure 11(b).
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Figure 12: The wave pattern induced by ship.

Figure 13: The wave pattern induced by floating sphere.
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Figure 14: Pressure force and viscous force variations with time Re = 100.
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3.3 Fluctuations of pressure and viscous forces

The drag force coefficient can be divided into two parts, pressure and viscous force
components. And we analyze the relationship between the partial force with the
grid resolution. For the cylinder and airfoil cases below, the grid level is equal to 9
without specific statement.

For the bluff body, e.g., cylinder in this paper, the pressure force component is
lager than the viscous one for even with low Reynolds number, like as Re = 100.
The viscous force component stands a stable constance after it is convergent,
but the pressure force component has fluctuation, as shown in Figure 14(a). For
streamlined body, e.g., airfoil in this paper, the situation is opposite. This means
that the viscous force component is lager than pressure one with Re = 100, as
shown in Figure 14(b).

With Reynolds number 1000, the cylinder case does convergent to a stable
value as stated previously. And the pressure force is lager and has more violent
fluctuation than the viscous force, as shown in Figure 15(a). For airfoil case with
the same Reynolds number, as shown in Figure 15(b), the viscous force component
is approaching to pressure force and there is almost no fluctuation for both of them.
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Figure 15: Pressure force and viscous force variations with time Re = 1000.
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4 Conclusion

The validations of the fluid fields with bluff or streamlined body are carried out
employing open CFD software Gerris. The criteria is based on the force coefficient
convergence with different grid levels. The computational process shows that it is
easy to adjust the grid resolution for various grid levels of a certain boundary case
with or without water free surface.

The results show that the fluid field with streamlined body without free surface
is easier to converge than the bluff body. For the water surface cases, the force
coefficient would converge to a ideal one for both bluff and streamlined bodies.
The wave field of streamlined body would be regarded as steady one for a certain
Froude number condition. But for the bluff body case, the force coefficient would
present fluctuation with small amplitude. The convergence validation should be
implemented preliminarily for the computation of the fluid dynamics and it is easy
to do in Gerris just to modify the grid level parameter in the input script file.
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