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Abstract 

The paper briefly describes one numerical model for the simulation of fluid-
structure coupled problems. The presented model is primarily intended to simulate 
the fluid-structure dynamic interaction in seismic conditions of civil engineering 
structures which are in direct contact with fluid and which can often be 
encountered in engineering practice, for example: dams, water tanks (reservoirs), 
offshore structures, pipelines, water towers, etc. The model is based on the so 
called “partition scheme” where the equations governing the fluid’s pressures and 
the displacement of the structure are solved separately, with two distinct solvers. 
The SPH (Smooth Particle Hydrodynamics) method is used for the fluid and the 
standard FEM (Finite Element Method) is used for the structure, which can be 
made from reinforced concrete or steel and which can be simulated with shell or 
3D elements. The model includes the most important nonlinear effects of 
reinforced concrete behaviour: yielding in compression and opening and 
propagation of cracks in tension (with tensile and shear stiffness of cracked 
concrete), as well as steel behaviour: yielding in compression and tension. The 
most important nonlinear effects of the fluid can also be simulated, like fluid 
viscosity, turbulence and cavitation. Some of the model’s possibilities are 
illustrated in a practical example. 
Keywords: coupled problems, fluid-structure interaction, SPH method, nonlinear 
behaviour, shell structures, water impact. 

1 Introduction 

Structures which are in direct contact with fluid, for example: dams, water tanks 
(reservoirs), off shore structures, pipelines, water towers etc., are very common in 
engineering practice. Numerical models for realistic simulations of these 
structures have to include the simulation of the fluid-structure interaction to 
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ascertain the real behaviour of this complex system. This problem is particularly 
emphasized under dynamic (seismic) conditions and it is commonly referred to as 
a Fluid-structure interaction (or a coupled, or a multi-field) problem, Hou et al. 
[1]. Some of those structures can be seen in fig. 1. 
 

        
Off-shore structure Underwater tank Underwater tunnel Dam 

Figure 1: Examples of structures in direct contact with fluid. 

     Fluid-structure interaction (FSI) problems in general, are problems where solid 
structures interact with internal or surrounding fluid. FSI problems can be 
encountered in many scientific and engineering fields. Aside from in civil 
engineering, they can be found in naval engineering (ship stability, propeller blade 
design…), mechanical engineering (design of turbines, pipes…), aerodynamics 
(design of aircraft wings…), biomechanics (blood-heart interaction, inner ear fluid 
dynamics, jellyfish swimming, sperm motility, etc.), electro-hydrodynamics, 
magneto-hydrodynamic flows, etc. 
     But in spite of the very hard work of many scientists, a comprehensive study 
of such problems remains a challenge due to their multidisciplinary nature [2, 3]. 
For most FSI problems analytical solutions of the model equations are impossible 
to solve and laboratory experiments are limited in scope. With advances in 
hardware and software technology, numerical simulations and numerical methods 
become a powerful tool for these problems. 

2  Solution approach 

A coupled (multi field) problem involves two or more interacting fields, for 
example: a gravity dam with water accumulation, a water tower full of water etc. 
Such a problem is time dependent and the state of one field is continuously linked 
to the state of the other field and neither field can be solved independently from 
the other. Here, the coupling normally occurs through differential equations 
representing different physical phenomena. The coupled fields can be overlapping, 
as in the case of seepage and thermo-mechanical problems, or they can be non-
overlapping, as in the fluid-structure interaction problems as discussed in this 
work. Here, the coupling occurs due to the imposed boundary condition at the 
interface. The fields may be coupled with all the other participating fields or with 
only a few of them. The coupling in some problems, like in seepage, may disappear 
when steady state is reached. 
     Two main approaches exist for the simulation of fluid–structure interaction 
problems [1–4]: the Monolithic approach and the Partitioned approach. 
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     The monolithic approach treats the structure and the fluid in the same 
mathematical framework and forms a single system equation for the entire 
problem which is solved simultaneously by a unified algorithm. This approach 
often achieves better accuracy, but requires more resources and specific 
knowledge to develop a unique code for every particular problem. 
     On the other hand, the partitioned approach treats the fluid and the structure as 
two computational fields which can be solved separately with their respective 
mesh discretization and numerical algorithm. The partitioned approach preserves 
software modularity because the existing fluid solver and the existing structural 
solver are coupled. Moreover, the partitioned approach facilitates the solution of 
the fluid equations and the structural equations with different, possibly more 
efficient techniques which have been developed specifically for either the fluid 
equations or the structural equations. 
     Thus the partitioned approach has various advantages:  
(i) the resulting model is very modular, 
(ii) it’s easy to make any modifications, 
(iii) every modification in one field improves the whole model, 
(iv) the programmer/improver can have specific knowledge in (only) a single 

field. 
     As a result, an effective partitioned method can solve an FSI problem with very 
sophisticated fluid and structural physical models. The developer of the FSI 
simulation has to only unify two different solvers in one task, to achieve an 
accurate and an efficient FSI solution with minimal code modifications. Special 
challenges arise when the structure has large displacements so the model has to 
track the changes in the boundaries, which can often be cumbersome and create 
errors. 

3  Numerical models 

3.1 Introduction 

All solutions shown here are based on the partitioned scheme where individual 
fields are solved independently by considering the interaction information transfer 
between them at every stage of the solution process. This approach allows the 
usage of ordinary approaches and appropriate mathematical/physical models for 
separate fields (the structure and the fluid) with the inclusion of minor 
modifications for the influence of interactions. 
     The models and the software developed for the fluid are based on the Navier–
Stokes equation and the SPH method [5–8]. The models and the software 
developed for the structure are based on the finite elements method (FEM) for the 
spatial discretization and the finite differences method for the time discretization 
of the system [9–11]. 

3.2 Numerical model for the fluid 

A fluid is a substance (either a liquid or a gas) that continuously deforms under 
the action of applied surface stresses. Fluid flow may be classified as either 
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inviscid or viscous. Inviscid flows are frictionless flows characterized by zero 
viscosity. No real flows are inviscid, but there are numerous fluids and flow 
situations in which viscous effects can be neglected. Inviscid flows may be further 
classified as either compressible or incompressible, depending on whether density 
variations are large or relatively unimportant. In this study the fluid is considered 
inviscid and weakly compressible. 

3.2.1 Navier–Stokes equations 
The Navier–Stokes equations are a set of equations that describe the motion of 
fluid substances such as liquids and gases [5–7]. 

2ρ ρ μi
i i

v
R p v

t




     (1) 

     In the above equations vi represents the vector of velocity,  is the mass-
density, p is the pressure,  is the viscosity of the fluid, and Ri is the sum of external 
forces acting on the fluid, e.g. gravity. The Navier–Stokes equations are a base 
point for all fluid movement simulations. 
     For complex situations, involving cavitation, turbulence, aerodynamics, 
hydrodynamics and many more, solutions of the Navier–Stokes equations can only 
be found with the usage of computers. 

3.2.2 SPH method 
The fundamental principle of the SPH method is to approximate any function  A r



with a unique, uniform, smooth and compact kernel function  ,W r r h
 

 that is

defined all over the space , with the smoothing length h. 

     ,A r A r W r r h dr



      
  (2) 

where r is any point in . The smoothing length h, or core radius, is a scaling 
factor that controls the smoothness or roughness of the kernel. The obtained results 
are critically dependent on the choice of the kernel function (fig. 2). 

Figure 2: Kernel function. 

     This approximation, in discrete notation, leads to the approximation of the 
function  A r


 at a particle of interest:

 WIT Transactions on Modelling and Simulation, Vol 59,
 www.witpress.com, ISSN 1743-355X (on-line) 

© 2015 WIT Press

124  Computational Methods and Experimental Measurements XVII
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
                                            (3) 

where the summation is over all the neighbouring particles within the region of 
the kernel function. The mass and the density are denoted by mb and ρb 
respectively. 
     The kernel function should satisfy several conditions such as positivity, 
compact support, and normalization. Also, it has to be monotonically decreasing 
with increasing distance from the particle and behave like a delta function as the 
smoothing length tends to zero. One of the often used kernel functions is  
the Gaussian function [6–8], defined by: 

 
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 2 22
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1
,

2

r h
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h


 

 
                                    (4) 

which is also used in this work. 
     The SPH method assumes that the particle masses and mass-densities for all 
particles are known before the method starts. The particle mass is a user defined 
constant, but mass-density is a continuous field of the fluid, which must be 
computed [6–8]. 
     This is facilitated by the usage of an equation of state to determine fluid 
pressure. In this work the Tait equation of state is used which defines the 
relationship between pressure and density according to expression: 

72
0 0

0
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c
P

 
 

         

                                              (5) 

where 0 is the reference density (often 0=1000 kgm-3) and c0 is the speed of 
sound at reference density. 
     Furthermore, the fluid has to satisfy the momentum conservation equation: 

1v
P g

t 


    


 
                                               (6) 

where g is the Earth’s acceleration: g
 =(0, 0, 9.81), and 


 is the diffusion term. 

In this model the artificial viscosity proposed by Monaghan [6–8] has been used 
for formulations of the diffusion term. 
     Changes in the fluid density are calculated with: 

b ab ab

b

m v W
t


 

                                                (7) 

which represents the continuity equation. 
     The standard Predictor-Corrector scheme is adopted as the solver algorithm [6–
8]. 

3.3 Numerical model for the structure 

3.3.1 Theoretical considerations 
For the dynamic equilibrium of a solid body in motion the principle of virtual work 
can be used to write the equations independent of material behaviour: 
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       sb u t 0

t

T T T
d u u d u d      

  

                               (8) 

where u  is the vector of virtual displacements,    is the vector of associated 

virtual strains, b is the vector of applied body forces, t is the vector of surface 
tractions,  is the vector of stresses, s  is the mass density,   is the damping 

parameter and a dot refers to differentiation with respect to time. The domain of 
interest  has the boundary t  on which boundary tractions t are specified. 

     In dynamic analysis, the finite element method can be applied in both analyses: 
for space and for time. However, it is general practice to use finite elements for 
space and finite differences for time [9, 10]. This approach is also adopted in this 
work. Here, the displacement formulation is used because of its simplicity, 
generality and good numerical properties. For the representation of the finite 
element, the displacements and the strains and also their virtual counterparts are 
given by the following relationships: 

u u

 
   

   

   

      

Nu N u

Bu B u

D DBu D DB u

                                   (9) 

where u is the vector of nodal displacements, u  is the vector of virtual nodal 
variables, N is the matrix of global shape functions, B is the global strain-
displacement matrix and D is the global constitutive matrix.  
     If (9) are substituted into (8), and if we note that the resulting equation is true 
for any set of virtual displacements, then the following equation can be obtained 
in a well-known matrix form: 

 s i s i s i s su u u d   M C R f M                                       (10) 
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where N is the matrix of global shape functions [10],  , ,s s s iuM C R  are the well-

known matrices of mass, damping and stiffness, respectively, and d  is the ground 
excitation caused by an earthquake. 
     For real structures, the strain-deformation relationship is generally non-linear: 

 u       ;       u  B B B                                                 (12) 
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which represents the so called geometrical nonlinearity. In fact, because of 
geometry transformations, the array B is not linear but dependent on system 
displacements. The -u relationship is known as the model of geometry. 
     Structures may undergo either: (i) small deformations which are negligible 
compared to the dimensions of the body; or (ii) large (or finite) deformations in 
which the theory of small deformations is no longer valid. The second type of 
deformations is termed as a geometrically nonlinear problem and special 
procedure is required for its solutions. In many real civil engineering structures 
geometric nonlinearity can be neglected. 
     The relationship between stress () and strain () is also generally nonlinear, 
and represents material nonlinearity. It is usually called the material model or the 
constitutive relationship. 
     All real materials have nonlinear behaviour, but in many cases the material can 
be consider linear. Many types of material models were developed to represent the 
variety of behaviours such as linear elastic, nonlinear elastic, elasto-plastic, visco-
elastic, visco-plastic, creep, cracking or fracture etc. Different hardening laws such 
as isotropic and kinematic hardening also developed in the plastic and visco-
plastic models. Apart from the linear elastic models, all of these representations 
are, in some sense, nonlinear. 

3.3.2 Implemented elements 
The presence of shells is common in the engineering practice. This is logical 
because it’s well known that shells are economically efficient structures that have 
been used for a long time. In engineering practice the term shell refers only to a 
curved thin structure while other flat structures are called plates which are only  
a simplified case of shells.  
     In the developed model thin curved (or flat) structures can be modelled with 8-
node or 9-node degenerated shell elements, with 6 degrees of freedom in each 
node (fig. 3). 
 

 

Figure 3: Shell element. 

     Those elements were primarily developed for the simulation of reinforced 
concrete structures and/or steel structures, and include the most important 
nonlinear effects of reinforced concrete behaviour: yielding in compression and 
opening and propagation of cracks in tension, as well as the nonlinear behaviour 
of steel (reinforcing or structural) [12]. Also, those shell elements are free of 
membrane and shear locking, according to [11]. 

Y (v)

X (u)
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     For structure modelling of spatial (3D) problems, 20-node and 27-node 
(“brick”) elements are also incorporated in the model. These elements can be used 
to describe the surrounding soil (not used in this paper). 

3.4 Solution concept for the dynamic fluid-structure interaction problem 

As mentioned before, in the partitioned approach the two developed 
models/softwares are independent. However, those two softwares have to 
communicate, and exchange information. 
     The first step in the numerical analysis is to determine fluid pressures on the 
structure for the initial state (steady state). In some cases those are the hydrostatic 
pressures, and in some cases, as shown in the example, initial pressures are equal 
to zero. The next step is solving equation (10), with one additional member: ffs, 
which represents the fluid forces on the structure (13).  

 s i s i s i s s fsu u u d    M C R f M f                                  (13) 

     The vector of fluid forces ffs, can be calculated from (14). 
fs  f Q P                                                     (14) 

where P represents the fluid pressures on the structure. The interaction matrix Q 
in equation (14) includes only the surface integration and is defined as (fig. 4): 

T
i=   dΓ

i

n


Q N N

                                               (15) 

where N is the matrix of global shape functions [10]. After determining the 
displacement of the structure, the calculation domain of the fluid is reconfigured.  
     For the particles close to the reconfigured border it is necessary to re-determine 
the density and the pressure with equations (5–7). This procedure is effective only 
for small deflections of the structure, so the time-step analysis should be set so that 
displacements are really small (less than one tenth of the initial fluid particle 
spacing). 
     The solution scheme is presented in fig. 5. 
 

4  Example 

A very simple example, that can describe most of the possibilities of the developed 
model, is presented. The example is the well-known so called “Dam break” with 
one flexible boundary. The basic geometry and initial water position is shown in 
fig. 6. 
     The fluid used is pure water with mass density: 0=1000 kg/m3. Water is 
considered non-viscous (inviscid) and weakly compressible. 
     In the presented problem all boundaries are fixed except for the downstream 
boundary (barrier) which is flexible. This barrier is a steel plate with thickness 
ts1=12 mm. This steel plate is fixed on three sides (bottom, left and right) and the 
top side is free. 
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Figure 4: The fluid structure 
interaction surface 
and unit norm. 

Figure 5: The solution scheme for  
the fluid-structure coupled 
problems analysis. 

 

        

Figure 6: The basic geometry and initial water position. 

     The other boundaries are considered so called dynamic boundaries. In the SPH 
method boundary particles are forced to satisfy the same equations as fluid 
particles (the momentum equation, the continuity equation, the equation of state 
and the energy equation), but they are fixed – they can’t move. Boundary particles 
are organized in a staggered manner. 
     The material characteristics used for the steel barrier and water are given in 
Table 1 where c is the speed of sound in water and sy is the yielding stress of 
steel. Other parameters are the well-known Young modulus (Es), the Poisson’s 
coefficient (s) and mass densities for water and steel (0 and s) respectively. 
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     The particles are initially arranged in a box 1.2×1.2×1.5 m. Total number of 
particles, including border particles is 48680, fig. 6. The time step is t=0.0005 s, 
and total computational time is ttot=4.0 s. 
 

Table 1:  Material characteristics. 

Fluid – water Structure – steel barrier 

3
0 1000.0

1430.0

kg m

c m s

 


 

2

2

3

200.0

240.0 370.0

0.3

7850.0

s

y u

s

s

E GN m

f f MN m

kg m













 

 
 
     The initial pressures on the steel plate (the flexible barrier) are zero, because in 
the initial state the water didn’t touch the barrier. The first contact between the 
water and the barrier occurred at time t=0.634 s. The water’s influence on the 
barrier begins at that time. 
     Figures 7, 8 and 9 show some of the results of the numerical analysis: the 
movement of water particles, the water pressures on the flexible barrier and  
the displacements (the deflection) of the barrier in some of the time steps, all 
visualised in ParaView [13]. The different dot colours represent different pressures. 
The red dots represent larger pressures then the blue ones. 
 

5  Conclusion 

The developed numerical model for the Fluid–Structure interaction represents a 
powerful tool in ascertaining the real behaviour of structures which are in direct 
contact with and influenced by the fluid. The developed software can simulate the 
most important nonlinear behaviours of structures, as well as the nonlinear 
behaviours of the fluid. However, the SPH method itself has a lot of issues that 
need to be further investigated, especially when the structure has large 
deformations and impulsive loadings. In such cases the particles usually become 
highly disordered and results obtained may not always be accurate. Not to mention 
that large deformations with material nonlinearity are still not a completely solved 
problem in the structures itself. 
     One of the main disadvantages of the presented method is its long duration and 
computer memory consumption. But, with the improvements in processor 
technology this problem will become secondary. The primary problem still 
remains the realistic physical and numerical description of reality. 
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(a) t=0.35 s 

 
(b) t=0.70 s 

 
(c) t=0.92 s 

 
(d) t=1.15 s 

 
(e) t=1.40 s 

 
(f) t=1.75 s 

 
(g) t=2.10 s 

 
(h) t=2.45 s 

Figure 7: The movement of water particles and the deflection of the barrier. 
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(a) t=0.70 s 

 
(b) t=0.92 s 

 
(c) t=1.15 s 

 
(d) t=1.40 s 

 
(e) t=1.75 s 

 
(f) t=2.10 s 

Figure 8: The water pressures on the flexible steel barrier through time. 

 

 
(a) t=0.70 s 

 
(b) t=0.92 s 

 
(c) t=1.15 s 

 
(d) t=1.40 s 

 
(e) t=1.75 s 

 
(f) t=2.10 s 

Figure 9: The deflection of the flexible steel barrier through time (enlarged 20 
times). 
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