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Abstract

A high accurate finite volume method based on the use of Moving Least
Squares (MLS) approximants is presented for the resolution of the incompressible
Navier–Stokes equations on unstructured grids. Moreover, in order to eliminate
the decoupling between pressure and velocity, we present a new Momentum
Interpolation Method that allows interpolations better than linear on any kind of
mesh. The accuracy of the new method is evaluated by a steady and unsteady test
cases.
Keywords: high-order methods, incompressible flow, Moving Least Squares,
Momentum Interpolation Method, unstructured grids, collocated grids.

1 Introduction

Numerical solution of the Incompressible Navier–Stokes equations has a wide
range of applications, such as low speed aerodynamics, biomedical fluid flow
and hydrodynamics. In this kind of flows, the main problem with numerical
solutions is to couple the changes of the velocity field with changes of the pressure
field, and assuring at the same time that the continuity equation is satisfied. The
staggered variable arrangement has been widely used for the discretization of
the Incompressible Navier–Stokes equations, but it requires the use of structured
meshes. However, most of engineering problems have a complex geometry making
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difficult the use of this kind of variable arrangement. On the other hand, in
collocated grids, vector variables and scalar variables are stored at the same
locations, usually in the centroid of the control volume. This seems to be a good
approach to handle complex geometries. The main problem is the possibility of
checker-board due to the central-difference discretization of the pressure.

In this context, the development of very accurate numerical methods to work
on unstructured grids is very desirable. In this work we have proposed a
new higher-order accurate finite volume formulation for the numerical solution
of incompressible fluid flows on unstructured and collocated grids. The new
formulation is based on the use of Moving Least Squares approximants. Moreover,
in order to eliminate the decoupling between pressure and velocity, we present a
new Momentum Interpolation Method that allows interpolations better than linear
on any kind of mesh.

2 Moving Least-Squares

The Moving Least Squares (MLS) approach was originally devised in 1981 for
data processing and surface generation [1]. The basic idea of the MLS approach is
to approximate a function u(xxx) at a given point xxx through a weighted least squares
fitting on a compact domain around xxx. The resulting approximation, û(xxx), can be
written as

u(xxx) ≈ û(xxx) = NNNT (xxx)uuuΩxxx
= pppT (xxx)MMM−1(xxx)PPPΩxxx

WWW (xxx)uuuΩxxx
(1)

where NNNT (xxx) is the vector of MLS shape functions and uuuΩxxx
contains the known

values of the function u(xxx) at the compact domain Ωxxx. The vectorpppT (xxx) represents
an m-dimensional functional basis (polynomial in this work), PPPΩxxx is defined
as a matrix where the basis functions are evaluated at each point of the stencil
and the moment matrix MMM(xxx) is obtained through the minimization of an error
functional [2] and is defined as

MMM(xxx) = PPPΩxxxWWW (xxx)PPPTΩxxx
(2)

The kernel or smoothing function, W (xxx), plays an important role weighting
the importance of the different points that take place in the approximation. A
wide variety of kernel functions are described in the literature. In this work the
exponential kernel has been used, defined in one dimension as

Wj(xj , x, sx) =
e−( d

c )
2

− e−( dm
c )

2

1− e−( dm
c )

2 (3)

for j = 1, ....., nx, where d = |xj − x|, dm = 2 max (|xj − x|).
In equation (3) dm is the smoothing length, nx is the number of neighbors and

x is the reference point where the compact support is centered, the coefficient c is
defined by c = dm

sx
and sx is the shape parameter of the kernel. This parameter
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plays defines the kernel properties and therefore, the properties of the numerical
scheme obtained.

As far as 2D applications are concerned, a multidimensional kernel can be
obtained by means of the product of 1D kernels. For instance the 2D exponential
kernel is defined by the following expression

Wj(xj , yj , x, y, sx, sy) = Wj(xj , x, sx)Wj(yj , y, sy) (4)

The order of MLS approximations is determined by the polynomial basis used
in the construction of MLS shape functions. Here we use quadratic and cubic
polynomial basis. More details can be found in [3, 4].

The high order approximate derivatives of the field variables u(xxx) can be
expressed in terms of the derivatives of the MLS shape function. So the nth
derivative is defined as

∂nû

∂xn
=

nx∑
j=1

∂nNj(xxx)

∂xn
uj (5)

We refer the interested reader to [4, 5] for a complete description of the
computation of MLS derivatives.

3 Governing equations and numerical discretization

The Navier–Stokes equations in Cartesian coordinates can be written in non-
dimensional form as

∂UUU

∂t
+UUU · (∇UUU) = −∇p+

1

Re
(∆UUU) (6)

∇ ·UUU = 0 (7)

In this work we only address 2D problems, so UUU = (u, v)T is the velocity field.
Moreover p(x, y, t) is the pressure variable and Re is the Reynolds number.

The continuity equation acts as a constraint in the velocity since the system of
equations (6) and (7) is decoupled. Here we use the SIMPLE algorithm [6] to solve
the system, and thus pressure is used as a mapping parameter. Figure 1 shows a
flowchart of this algorithm. A number of inner iterations is required each time step
to obtain a velocity field UUU = (u, v)T that satisfies equations (6) and (7). Every
inner iteration the momentum equation (6) is used to predict the velocity field. A
pressure correction equation is obtained from (6) and (7) to define the velocity and
pressure corrections needed to satisfy the continuity equation (7).
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Figure 1: A flowchart for the unsteady SIMPLE algorithm.

A cell-centered finite volume scheme is applied to solve the incompressible
Navier–Stokes equations (6)–(7). The discretized momentum equation reads as

VI
3UUUm+1,n+1

I − 4UUUnI +UUUn−1
I

2∆t
+

Nf∑
j=1

NG∑
ig=1

[HjUUU j ]igWig

= −
Nf∑
j=1

NG∑
ig=1

[
pm,n+1
j · n̂nnj

]
ig
Wig+

1

Re

Nf∑
j=1

NG∑
ig=1

[
∇UUUm+1,n+1

j · n̂̂n̂nj
]
ig
Wig

(8)

where Nf is the number of faces of the control volume, NG represents the
number of quadrature points,Wig is the corresponding quadrature weight for the
quadrature point at cell faces and n̂̂n̂nj is the unitary normal nnn multiplied by the area
of the face j.

A deferred correction is used to obtain a high-order discretization of the
convective term UUU j in equation (8). It reads as

UUU j =
(
UUULOj

)m+1,n+1
+ (UUUHOj −UUULOj )

m,n+1
(9)
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where the superscript m,n+ 1 refers to the previous inner iteration at the current
time step n+ 1. In equation (9) the higher-order convective term,UUUHOj , is treated
explicitly from the previous inner iteration (m).

In this work we have approximated the termsUUUHOj , pm,n+1
j ,∇UUUm+1,n+1

j using
Moving Least Squares approximants.

The term Hj from equation (8) is written as

Hj = Û̂ÛU j · n̂̂n̂nj (10)

where the value of Û̂ÛU j is obtained using the Momentum Interpolation Method
(MIM) [7], as it will be explained later.

Once the velocity field is computed from equation (8) it is required to impose
the continuity constraint given by equation (7). In order to satisfy this constraint
the following pressure correction equation is solved

Nf∑
j=1

NG∑
ig=1

[
Û̂ÛU j · n̂̂n̂nj

]
ig
Wig −

Nf∑
j=1

NG∑
ig=1

[(
VI
aI

)
j

(
∇p
′
)
j
· n̂̂n̂nj

]
ig

Wig = 0 (11)

where aI denotes the diagonal term of the mass matrix of the momentum equations
for cell I . The terms

(
VI

aI

)
j

and
(
∇p′

)
j

are obtained using MLS approximations.

The value of Û̂ÛU j is computed using the Momentum Interpolation Method (MIM)
as

Û̂ÛU j = UUU∗
j +

(
VI
aI

)
j

[(
∇pI

)
j
−∇pj

]
(12)

in equation (12) UUU∗
j is the solution obtained with the momentum equations (8)

approximated at integration points. We remark that all terms with the subscript j
of equation (12) require approximations since the known values are located at the
centroid of the cells. Rhie and Chow method uses a linear interpolation to obtain
the values of UUU∗,

(
VI

aI

)
,
(
∇pI

)
j

and ∇pj at the integration point j [7, 8]. We
propose obtain these values by using higher-order MLS approximations as

UUU∗
j =

nxxx∑
k=1

Nk(xxxj)UUU
∗
k (13)

(
∇pI

)
j

=

nxxx∑
k=1

Nk(xxxj)∇pk (14)

In equation (14) the pressure gradient (∇pk) is obtained at the neighboring cell
centroid k as
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∇pk =

nxxx∑
l=1

∇Nl(xxxk)pl (15)

Finally, the velocity and pressure fields are updated by

UUUm+1,n+1 = UUU∗ +UUU
′

= UUU∗ − VI
aI

(
∇p
′
)
I

(16)

pm+1,n+1 = pm,n+1 +
(
p
′
)m+1,n+1

(17)

where UUU∗ is the velocity field obtained from the momentum equation (8). The
superscript m+ 1 refers to the current inner iteration and m refers to the previous
inner iteration. In addition, n+ 1 refers to the current time iteration.

The resolution process is iteratively performed until velocity and pressure
satisfy equations (6) and (7). We refer the interest reader to [3] for more details.

4 Numerical results

In this section we show two examples to test the accuracy of the new method.

4.1 Kovasznay flow

The first test case is the Kovasznay Flow [9]. This test case reproduces the laminar
flow over a periodic array of cylinders. Since this flow introduces nonlinear effects
it is a common benchmark to test the precision and the order of the numerical
scheme [10, 11]. The computational domain is defined as Ω = [−0.5, 0.5] ×
[−0.5, 0.5]. The analytical solution has the form:

u(x, y) = 1− eαx cos (2πy), v(x, y) =
α

2π
eαx sin (2πy) (18)

p(x, y) =
1

2

(
1− e2αx

)
where the parameter α is given by α = Re

2 −
√

Re2

4 + 4π2

Dirichlet boundary conditions are employed on all the boundaries where the
values are prescribed with the analytical solution. The Reynolds number is 40 and
different quadrilateral cell meshes of 32× 32, 64× 64, 128× 128 and 256× 256
are used in order to obtain the spatial order of convergence. A fourth order method
is used to solve this problem.

Table 1 show the L2 norm of the error in the variables u, v and p. L2 norm and
the obtained order of accuracy.
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Table 1: Accuracy orders of velocity components and pressure field for Kovasznay
flow test case with Re = 40. A 4th order scheme is used. The expected
order of convergence is recovered.

u-velocity field v-velocity Pressure

Mesh L2u Order u L2v Order v L2p Order p

32 × 32 1.41 × 10−05 - 7.99 × 10−06 - 2.64 × 10−05 -

64 × 64 1.00 × 10−06 3.81 4.15 × 10−07 4.27 1.20 × 10−06 4.47

128 × 128 6.55 × 10−08 3.94 2.51 × 10−08 4.05 6.96 × 10−08 4.10

256 × 256 4.17 × 10−09 3.97 1.55 × 10−09 4.02 4.98 × 10−09 3.81

4.2 Viscous flow past a NACA 0015 airfoil

In this section we compute the laminar flow around a NACA 0015 airfoil inside
a channel at Re = 100 and with an angle of attack of α = 10 degrees. The
computational domain has a length of 2.2c and a height of 0.41c, where c denotes
the chord of the airfoil.

The computational grid is shown in figure 2. It is an unstructured grid with 9469
quadrilateral cells.

Figure 2: Unstructured mesh used for the computation of the laminar flow around
the NACA 0015 airfoil. The mesh has 9469 quadrilateral cells.

The inflow velocity profile is given by u(0, y) = 4Umy(H−y)
H2 and v(0, y) = 0,

where H is the height of the domain and Um = 1.5 is the maximum velocity of the
parabolic profile. Pressure outflow is prescribed at the outlet and no-slip boundary
conditions are set on all remaining boundaries. The Reynolds number is defined by
Re = uc/ν, where the value of the mean velocity is defined as u = 2Um

3 . A third
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order version of the proposed method has been used for the computations. Results
are plotted in figure 3 where we show the contours of velocity and pressure fields
and contours.

a) b)

Figure 3: Numerical results of the laminar flow around the NACA 0015 airfoil at
Re = 100. (a) The velocity field and contours and (b) the pressure field
around the airfoil.

5 Conclusions

In this work we have presented a new methodology for the numerical solution
of incompressible fluid flows on unstructured meshes based on the Moving
Least Squares (MLS) approximations. It is a higher-order accurate finite volume
formulation, and the SIMPLE algorithm is employed to impose iteratively the
incompressibility condition. In order to avoid numerical instabilities a novel high
order discretization of the Momentum Interpolation Method is proposed. The
methodology presented is validated with some numerical examples, and we show
that the formal order of accuracy is recovered. This novel formulation can be easily
included in existing finite volume codes.
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