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Abstract 

Using the original two-step iteration process, we develop a conservative finite-
difference scheme for the problem of femtosecond pulse propagation in 
semiconductor under the action of an external electric field. Its advantages consist 
in its applicability for the problem with non-uniform boundary conditions and it 
possesses also a property of asymptotic stability. Therefore, it is possible to 
provide a computation for long interval time without losing the conservatism 
property. We pay special attention to the calculation of initial function distribution, 
which are a solution of the set of 2D stationary partial differential equations. We 
solve this set of equations by using an additional iteration process that is similar 
to the iteration process applied for the solution of the main problem. Using 
computer simulation, it is shown that the proposed conservative finite-difference 
scheme is an effective tool for calculation of complicated regimes of 
semiconductor characteristic changing. Semiconductor plasma generation under 
the action of external electric field is investigated. 
Keywords: conservative finite-difference scheme, iteration process convergence, 
femtosecond pulse, semiconductor. 

1 Introduction 

Laser radiation interaction with semiconductor is very actual problem. This 
process accompanies by many nonlinear effects such as optical bistability (OB) 
[1], for example, and it is governed by both nonlinear equations, which describe 
an evolution of free-electron concentration and concentration of ionized donors, 
and Poisson equation for electric field strength, and equation with respect to laser 
pulse intensity. For computer simulation of these complicated non-stationary 
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processes it is necessary to use a finite-difference scheme possessing such 
characteristics as conservatism, high precision of calculations and asymptotic 
stability to initial data changing. These requirements are caused by developing of 
periodic processes for laser pulse interaction with a semiconductor if the OB takes 
place. As a rule, a period of semiconductor characteristic oscillation is greater than 
100 dimensionless units. Moreover, OB occurring leads to appearance of domains 
with high concentrations of charged particles (electrons and ionized donors) and 
these domains have sharp boundaries. Another characteristic feature of OB 
realization is an explosive absorption of laser energy. Therefore, in certain time 
moments the free-charged particle concentrations change very fast. It means that 
the concentrations have big derivative in time. 
     One of the well-known methods for solving of multi-dimensional equations is 
the split-step method [2]. However, in [3] we have shown that this method has 
some disadvantages if we apply it for the solution of the problem under 
consideration. Therefore, in [4] we proposed and developed a new finite-
difference scheme for numerical solution of such kind of the problems. Its main 
feature consists in using two-step iteration process for solving the set of the 
corresponding nonlinear equations. This allows us to realize both a conservatism 
property for finite-difference scheme and its asymptotic stability as well. In the 
present paper we continue our research for the problem with arbitrary boundary 
conditions and proposed the additional iteration process for calculation of initial 
function distributions. 

2 Statement of 2D problem 

The process of semiconductor plasma generation is described by the following set 
of 2D dimensionless differential equations [5]: 
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0 xx L  , 0 yy L  , 0t  . 

     Above the following notations are introduced. Function n denotes a free 
electron concentration in the conductivity zone of a semiconductor; N is a 
concentration of ionized donors. Function   describes a dimensionless electric 

field potential. I is the intensity of laser radiation propagating along the y axis. The 
coordinate x is a coordinate that is transverse to the direction of laser pulse 
propagation. Variables x, y are dimensionless spatial coordinates, xL , yL  denote 

their maximal values, correspondingly. Variable t denotes a dimensionless time. 
Coefficients of electron diffusion xD , yD  and coefficients of electron mobility

x , y  are non-negative constants. Parameter   depends, in particular, on the 

maximal concentration of free charged particles, 0  denotes maximal value of 
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absorption coefficient for laser energy. Dependence of the absorption coefficient 
( , )N n  from charged particle concentrations can be approximated by different 

ways in dependence on physical experiment conditions. Below we consider the 
following dependence: 

(1 )( , ) (1 ) , , 0nN n N e        ,                                (2) 

which is close to one of the experimental dependencies [1]. The functions G and 
R, describing generation and recombination of free charged particles in the 
semiconductor, are given by the formulas: 

0( , ) ( , ),G N n q I N n  
2
0( , )

p

Nn n
R N n




 ,                              (3) 

0n  is an equilibrium value of the free electron concentration and ionized donor 

concentration, corresponding to absence of both the light pulse action on  
a semiconductor and external electric field. Parameter p  characterizes a 

recombination time of free electrons, 0q  is a maximal intensity of the incident 

laser pulse. Its profile is Gaussian one along the x-coordinate: 
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.                         (4) 

     Boundary conditions for the set of the equations (1) are written below. They 
correspond to absence of electric current through semiconductor faces and 
semiconductor is placed in the external electric field as well: 
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0
x y

x y
x L y L

n n
n n

x x y y

  
 

                 ,                       (5) 

0, 0,

,
x y

x y
x L y L

E E
x y

 

 

 
   

 
. 

     Initial conditions for the free charged particle concentrations under the external 
electric field action are written in the following manner: 

0( , , 0) ( , )n x y t n x y  , 0( , , 0) ( , )N x y t N x y  ,                 (6) 

0( , , 0) ( , )x y t x y   , 
0

0
t

I

 , 

where 0( , )n x y , 0( , )N x y , 0( , )x y  are functions, which are found from the 

solution of the set of equations (1) in steady-state case and without laser pulse 
action. 
     For the problem (1)–(6) the law of charged particles preservation takes place: 

 
0 0

( ) ( , , ) ( , , ) 0
y x

L L

Q t n x y t N x y t dxdy    .                       (7) 

     A difference analogue of the invariant (7) should preserve and this property 
shouldn’t be loosen due to the accumulation of a computing error even for 
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calculation on long time interval. So, our aim is to construct the conservative 
finite-difference scheme with the property of asymptotic stability. 

3 Finite-difference scheme for the problem 

To solve the problem (1)–(6) numerically let us introduce in the domain 

     0 0 0x y tG x L y L t L          

the uniform grids in time and space  

x y t      , " ' 'x y t      ,                              (8) 

 , 0, ,x i x x x x xx ih i N h L N     ,  , 0, ,y j y y y y yy jh j N h L N     , 

 , 0, ,t k t t tt k k N L N      , 

 ( 0.5) , 0, 1,y j y y y y yy j h j N h L N       ,

 ( 0.5) , 0, 1,t k t t tt k k N L N         . 

     Let’s define the mesh functions , ,h h hn N   on the grid  in the following way: 

 , , ,ijk i j kn n x y t   , , ,ijk i j kN N x y t   , , .ijk i j kx y t    

     Function hI  we define on the mesh    shifted additionally on both spatial 

coordinate y and time coordinate:  , ,ijk i j kI I x y t  . 

     For brevity, we use the following index-free notations: 

ijkf f , 1
ˆ

ijkf f  ,  0.5
ˆ0.5f f f  , 

1 1i i jkf f  , 1 1j ij kf f  ,  0.5 10.5i if f f   ,  0.5 10.5j jf f f   , 

ijkI I , 1 1i i jkI I  , 1
ˆ

ij kI I  ,  
0.5

ˆ0.5I I I  . 

where f  is one of the mesh functions: , ,h h hn N  . For the finite-difference 

scheme construction we use also the following notations: 

  2
0 / ,pR nN n      2

0
ˆ ˆˆ / ,pR nN n    

0.5
ˆ0.5( ),R R R    

0.5

0 ,G q I   
0.5

0
ˆˆ ,G q I   

0.5
ˆ0.5( ),G G G   

   1 exp (1 )N n      ,    ˆ ˆ ˆ1 exp (1 )N n      , 
0.5

ˆ0.5( )    . 

     The first and the second differential derivatives are defined in standard way and 

notated as follows: , , , , , , .x x xx y y yy tf f f f f f f  

     In the case under consideration, the property of conservatism of the finite-
difference scheme consists in performance of a difference analogue of the 
conservation law (7) for charged particle concentrations:  
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 
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    .                               (9) 

     For numerical solution of the problem (1)–(6) we approximate the initial-
boundary problem by the set of finite-difference equations. For their resolvability 
we use two-step iteration process. Below the first step of the iteration process with 
the boundary conditions is written: 

1 1 11
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     The second step of the iteration process, written also with the boundary 
conditions, is: 

2 2 22
ˆ ˆ ˆˆ
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, 0,..., tk N , 0,..., xi N . 

     As an initial approach for the iteration process, the values of the functions, 
obtained on the previous time layer, are undertaken: 

00 00
ˆˆ ˆˆ , , ,

ss ss
n n N N I I 

 
    . 

     The iteration process is stopped if the following inequalities are valid: 
2 22

1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ , , , , 0

s s s s s ss s s
n n n N N N I I I       

 
          .  (12) 

     We don’t check up an accuracy of the electric field potential in (12) because 
we use additional iteration process for solving of the Poisson equation. 
     The finite-difference scheme possesses the second order of approximation on 
spatial coordinates and on time in the inner grid nodes. The boundary conditions 
are approximated with the first order. This is caused by the conservatism property 
validity. Necessity of such boundary conditions approximation was shown in [3] 
for 1D case problem. 

3.1 Remark to the Poisson equation solution 

At solving of the Poisson equation concerning the electric field potential (1) we 
have to construct an additional iteration process in such a way, that we have to 
solve only the 1D problem on each of iterations. Taking into account a linearity of 
this equation we use the split-step method. For this purpose we introduce 
additional function F on the grid x y    , which is governed by the problem: 

0 ˆ
s

F  , 
11 11 ˆˆ

sp p sp p

xx yy

F F
n NF F 



   
     

 
,                     (13) 

2 1 111 2 ˆˆ

p p ssp p

xx yy

F
n NF F F 



     
     

 
, 1,..., 1xi N  , 1,..., 1yj N  , 

where   is an iteration parameter. 
     For an assessment of the iteration process convergence we use the criterion 
based on the discrepancy assessment: 

11
2 2

3, 3
ˆˆ 0

ss
p p

xx yyF F n N  


   
        

 
.                      (14) 
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     If the solution, obtained on the p+2 iteration, satisfies to the criterion (14), then 

we choose
1

2ˆ
s

pF


 . 

3.2 Calculation of the initial function distributions 

Now let’s discuss the problem of initial function distribution for the problem (1)–
(6). If the external electric field is absent then we have the simple initial conditions 
for the problem: 0 0 0( , ) ( , )n x y N x y n  , 0( , ) 0x y  . If the external electric 

field acts only on one of the spatial coordinates ( 0xE   or 0yE  ) or if the 

electron mobility is the same ( x y    ), we can define initial distribution of 

the functions as [6]: 0 0( , )n x y n e , 0 0( , )N x y n e   and find the electric field 

potential 0 ( , )x y  as a solution of equation:  

 
2 2

0 02 2
n e n e

x y
     

  
 

. 

     However, if the arbitrary boundary conditions or difference between electron 
mobility coefficients take place, then it is necessary to solve additional problem. 
Because the laser radiation is absent at the initial time moment, the generation of 
free charged particles does not occur. Therefore, the following equality 0R   is 
valid. Thus, we obtain the following set of 2D stationary differential equations: 

 
2 2

2 2
n N

x y

   
  

 
, 2

0 0Nn n  ,                          (15) 

0x x y y
n n

D n D n
x x x y y y

  
                    

, 0 xx L  , 0 yy L  , 

with the boundary conditions (5). 
     For solution of the problem (15) we also construct two-step iteration process, 
as we done above, using the meshes defined in (8). For example, the finite-
difference scheme for the case x yD D  is written below. First step of iteration 

process with boundary conditions is: 
21
0

p pp p

r

N n nN N

 

 
 


, 0,..., xi N , 0,..., yj N ,               (16) 

 
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x xi ixx x
y y
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D D
  






 
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   


2
0
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 
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 1 1 1 1
p p p p p p

xx yy n N
  

  
   

   


, 1,..., 1xi N  , 1,..., 1yj N  , 

1

0
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 




1

x

p

x i N
 


 xE , 0,..., yj N , 
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1
0.5

0 0
0p p

x x xi
i i

n n E
 

  , 1
0.5 0

x x

p p
x xix i N i N

n n E
 

  , 0,..., yj N . 

     Second step of iteration process with the boundary conditions is the following: 
1 1 22 1

0
p pp p

r

N n nN N

 

   
 


, 0,..., xi N , 0,..., yj N ,               (17) 

 
2 1

1 1 1 1 1
0.5 0.5

p p
p p p p px x

x xi ixx x
y y

D Dn n
n n n

D D
  



 
    

 


   


 
1 1 2

2 1 1 1 1 0
0.5 0.5

p p
p p p p p

y yj jyy y
r

N n n
n n n  



 
    

 


    , 

 2 1 1 2 2 2
p p p p p p

xx yy n N
  

  
     

   


, 1,..., 1xi N  , 

1,..., 1yj N  , 

2

0

p

y j
 




2

y

p

y j N
 


 yE , 0,..., xi N , 

2 1
0.50 0

0p p
y y yjj j

n n E 
 

  , 2 1
0.5 0

y y

p p
y yjy j N j N

n n E 
 

  , 0,..., xi N , 

where   is an iteration parameter, r  is a regularization parameter, which is added 

for the computation performance enhancing. We use the following initial approach 
for our calculation: 

0 0 0
0, 0p p pn N n      , 0,..., xi N , 0,..., yj N . 

     Criteria of the iteration process convergence are chosen in following way: 

 2 2 2 2
1,p p p p

xx yy n N           

 2 2 2 2 2
0.5 0.5

p p p p px x
x xi ixx x

y y

D D
n n n

D D
      

   

 2 2 2 2 2
20.5 0.5

p p p p p
y yj jyy yn n n       

     , 1 2, 0   . 

     For the solution of the Poisson equation we use the Thomas algorithm. It should 
be also stressed, that the proposed finite-difference scheme (16)–(17) is a 
conservative one on each of iterations. It could be easily shown that the invariant 
(9) is valid for each of iterations. 

4 Computer simulation results 

Accuracy of initial condition calculation plays a basic role and has essential 
influence on the accuracy of the problem (1)–(6) solution. The distributions of free 
electron concentration, corresponding to calculations of the initial function 
distributions with various accuracies, are depicted in Fig. 1. As it is follows from 
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calculation error accumulation if the initial function distributions are calculated 
with low accuracy 2

1 2 10    . 

 

   
                        (a)                                       (b)                                       (c) 
 

   
                        (d)                                       (e)                                       (f) 
 

Figure 1: Free electron concentration distribution obtained for parameters 

0 2  , 0 1.5q  , 510x yD D   , 310  , 0 0.01n  , 1x y   ,

1p  , 3  , 2.553  , 0,xE  8,yE   1x yL L   and 

computation parameters 210x yh h   , 45 10   , 410  ,

410    , 410r
 , 5

1 10  , 7
2 10  , 3

3 10  ,
2

1 2 10    (a), (b), (c) and 4
1 2 10     (d), (e), (f) at time 

moments t=250 (a), (b), t=320 (c), (d), t=500 (e), (f). 

 

     However, for 0xE =  the concentration distribution should possess symmetry 

along the x-coordinate. Moreover, in this case it is impossible to reach a high 
accuracy of the electric field potential calculation for the problem (1)–(6): value 
of the discrepancy (16) increases up to 0.7 and couldn't be decreased by means of 
iteration number increasing. However, if initial function distribution calculates 
with enough high accuracy 4

1 2 10    , the discrepancy (16) has the order of 

magnitude that is less than 310 . In this case, the symmetry of the concentration 
distribution takes place. Therefore, the calculation accuracy of initial electric field 
potential distribution plays a key role under solving the problem (1)–(6). 

the Fig. 1, the solution symmetry could be significantly distorted because of 
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     As we stressed above our aim was to develop the finite-difference scheme for 
solution of the problem under consideration with arbitrary boundary conditions. 
To illustrate opportunities of developed finite-difference scheme, below computer 
simulation results made for non-uniform boundary conditions on both spatial 
coordinates are shown. Moreover, we carry out computing for different electron 
mobility coefficients for a long time interval without losing the conservatism 
property. As one can see from Fig. 2, very complicated periodic regimes of 
semiconductor characteristics changing take place under the action of high 
intensive laser pulse [7]. 
     We see a strong dependence of the free-electron concentration evolution on the 
electron mobility relation. If the electron mobility along the x-coordinate is less 
than its value along the y-coordinate then the “bird-like” structure appears over 
big time interval (Fig. 2 (j)). If the electron mobility components are the same for 
both coordinates then a spatial structure, which is similar to helical waves, appears 
(Fig. 2 (k)). Let us notes, that usually such kind of structures takes place if 
electrons move under the action of magnetic field. However, if the OB takes place 
and the external electric field acts on the semiconductor then the helical waves are 
formed. 
     The last considered case corresponds to a case of domination of the electron 
mobility along the x-coordinate over the y-component of the electron mobility 
(Fig. 2 (l)). We see strong asymmetric electron concentration distribution in the 
first half domain with respect to incident laser pulse. Moreover, under certain 
relation between the diffusion coefficients one can expect closing the domains 
with high electron concentration on the right side of central part of the domain. 
     We have to emphasize one more feature of considered laser pulse interaction 
with a semiconductor under the OB existence. We see in Fig. 2 that for majority 
of time moments, the domain with low electron concentration takes place near the 
semiconductor face, which corresponds to falling of the laser pulse. This domain 
cannot exist if the external electric field does not act along the y-coordinate in 
chosen direction. 
     We see also the high free-electron concentration domain appearance near the 
ending face of the semiconductor with respect to the laser pulse propagation 
direction. This is caused exactly by the electric field action directed along the y-
axis. Another condition for the low free-electron concentration occurring is certain 
value of the electric field strength: its magnitude must be enough for the high free-
electron concentration domain appearance near the ending face of the 
semiconductor.  
     In the end of this paragraph we stress one more that the computer simulation 
results were obtained for mesh steps being equal to 0.01 along both spatial 
coordinates. For spatial structures under consideration this value of mesh steps is 
sufficient big. Nevertheless, we see stable spatial structures which appearance and 
evolution is explained physically in the frame-work of both OB existence and the 
external electric field action as well. So, the developed finite-difference scheme is 
effective one for computation of such kind of laser pulse interaction with a 
semiconductor. 
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                         (a)                                      (b)                                      (c) 
 

  
                          (d)                                     (e)                                      (f) 
 

    
                        (g)                                       (h)                                       (i) 
 

   
                        (j)                                       (k)                                       (l) 

Figure 2: Free electron concentration distribution calculated for parameters

0 0.5  , 0 0.5q  , 510x yD D   , 310  , 0 0.01n  , 1p  , 3  ,

2.553  , 8xE  , 8,yE   1x yL L  , 0.1, 1x y    (a), (d), (g), (j), 

1x y    (b), (e), (h), (k), 1,x y   0.1 (c), (f), (i), (l) at time 

moments t=50 (a), (b), (c), t=100 (d), (e), (f), t=320 (g), (h), (i), t=500 
(j), (k), (l). 
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5 Conclusions 

In the present paper the finite-difference scheme for the problem of plasma 
generation with arbitrary boundary conditions is proposed on the basis of the two-
step iteration process. One of its main advantages consists in property of the 
asymptotic stability. Computer simulation results show the essential influence of 
accuracy of initial function distribution calculation on evolution of the free 
charged particle concentrations. We also demonstrated that the finite-difference 
scheme developed in the present paper is applicable for calculating of nonlinear 
complicated processes, which occur in a semiconductor under the action of high 
intensive laser pulse. 
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