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Abstract

Integrated volumetric methods such as finite elements and their “meshless”
variations are typically smoother because of the application of Gauss’s theorem
than the strong form finite difference and radial basis function collocation methods.
Minimization methods can be either local (such as finite elements) or global;
gradient based methods tend to go to the nearest location where the local Jacobian
is zero; when the eigenvalues of the Hessian are positive, then that location is either
a local or global minimum.

The starting point for the global volume-integrated minimization procedure of
Galperin–Zheng, is the set of expansion coefficients obtained from the simple
strong form radial basis function (RBF) discretization of the partial differential
equations (PDE). The volume integrated RBFs do not require a mesh for
integration because these integrated RBFs are evaluated at the global endpoints
rather than locally about a test point. This aspect is completely distinct from
finite elements or the so-called meshless methods finite element variations that
require a tessellation for local integration. Using these globally integrated RBFs
and the strong form expansion coefficients in the functional, the evaluation of the
functional L∞ errors are recorded for various choices of data centers, evaluation
centers and shape parameter distributions. These L∞ errors form a complex
landscape of maxima and shallow and deep minima. Finding the deepest possible
minimum is a complex process and not as simple as local gradient search methods
even using information from the Hessian matrix.
Keywords: meshless radial basis functions, multiquadric, strong and weak
formulation, partial differential equations, global minimization.
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1 Introduction

The minimization of the errors of the discretized multi-variant partial differential,
integral, or integro-differential equations is the objective of numerical schemes.
Such problems can be cast in terms of seeking the minimum of a function of n
variables, F(−→x ), see Harris and Stocker [1]. Define, J, as the Jacobian to be a
vector of the first order partial derivatives of F, and, H, the Hessian matrix to be a
square matrix of second-order partial derivatives of F. A Taylor series expansion
of F is given by:

F(−→x +∆−→x ) = F(−→x ) + ∆−→x J + 1/2∆−→x TH∆−→x + · · · (1)

where −→x k is a critical point. If the Jacobian, J(−→x k) =0, F (−→x k) may be at a
local maximum, minimum, or inflection point. To determine what type of point
−→x k is, one must examine the eigenvalues of the Hessian matrix at a critical point,
−→x k. The following test can be applied at any critical point for which the Hessian
matrix is invertible:

1. If the Hessian possesses all positive eigenvalues at −→x k, then F(−→x k) is a
local minimum.

2. If the Hessian possesses all negative eigenvalues at −→x k, then F(−→x k) is a
local maximum.

3. If the Hessian has both positive and negative eigenvalues at−→x k, then F(−→x k)
is a saddle point.

The finite element method (FEM) is based on minimizing the residual of the
interior partial differential equations and boundary conditions in a least-squares
sense. The method minimizes a least squares functional that consists of a weighted
sum of the residuals; FEM has a nice theoretical foundation in which the least
squares functional is minimized. FEM integrates local low order polynomials
that requires mesh generation. Mesh generation over irregular domains in higher
dimensional domains can present serious implementational difficulties. Another
appealing aspect of FEM is the fact that integration increases the convergence rate
and Gauss theorem: ∫

V
(∇ · −→v)dV=

∫
S

(−→v · −→n )dS (2)

reduces orders of differentiation.
Meshfree methods have been used to solve partial differential, integral, and

integro-differential equations; no mesh generation becomes a significant advantage
whenever the number of spatial dimensions is greater than or equal to three.
Traditional low order compactly supported methods such as finite difference,
element, volume methods do require meshes to define the connectivity relations.
Low mesh connectivity has the definite computational advantage of sparse
systems of equations that are well conditioned or are readily preconditioned.
The disadvantages are that these methods possess polynomial convergence and
the sparse systems of equations grow increasingly denser along with increasingly
poorer conditioning as the spatial dimensionality increases.
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Mesh free radial basis functions (RBFs) are particularly attractive because,
regardless of the dimensionality of the problem, they are univariate functions
of distance (usually Euclidean). RBFs may be globally supported that are either
finitely or infinitely differentiable or RBFs can be compactly supported possessing
finite differentiability. Only the C∞ RBFs such as multiquadrics, Gaussian,
Mathern splines, etc. possess exponential convergence. The objective is to find
efficient methods for the numerical solution of partial differential equations
(PDEs), integral equations (IEs), and integro-partial differential equations
(IPDEs). Assume that a dependent variable, U(−→x ,t) is an unknown piece-wise
continuous function on Ω ∈ <n. Over the interior, let L, be a linear or nonlinear
hyperbolic, elliptic, or elliptic differential operator with the associated forcing
function, f(−→x ,t). Let ℘ be well-posed boundary operators, and let g(−→x ,t) be
the associated forcing boundary condition. The set of well-posed interior and
boundary conditions are:

LU=f, over Ω\∂Ω, (3)

℘U=g, on ∂Ω. (4)

Any dependent variable, U(−→x ,t), see [2–4], can be expanded in terms of the N
radial basis functions, φ

j
, in terms of N expansion coefficients, αj .

U(−→x ,t) =
N∑

j=1

φj(
−→x )αj(t). (5)

The interpolation matrix is given as:

Aintp
−→α =

[
Φi,i Φi,b

Φb,i Φb,b

][ −→α i
−→α b

]
=

[
Ui

Ub

]
= U (6)

where i refers to the set of interior points and b refers to boundary points. The
interpolation matrix can easily be expanded to account for various degrees of
polynomial precision, see [4]. The approximate function, U(−→x ,t), is expanded in
terms of C∞ RBFs as

φj = (1 + ( / ) )2 γ , (generalized MQ), r =j ‖
−→x -−→yj ‖, (7)

where cj is the local shape parameter, γ ≥-1/2, {−→y } is the set of data centers,
and {−→x } is the set of evaluation points; {−→x } and {−→y } can be distinct or the
same. Note that c2

j plays the roles of a wavelet dilation parameter. Madych and
Nelson [5] and Madych [6] has provided theoretical guidance for optimizing the
interpolation procedure. He showed that C∞ radial basis functions, such as MQ,
converge exponentially as:

convergence rate ∼ O(λξ−m), where ξ=(c/h), and 0 < λ < 1, (8)

h is the fill distance, and m is the order of differentiation where m is positive
for differentiation and negative for integration. The dependent variables may be

rj cj
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continuous, or multi-valued; if multi-valued, then special basis functions can be
appended to the set of basis functions, see [4].

Madych also showed differentiation reduces the rate of convergence; however,
if the parameter, ξ, is sufficiently large, the derivatives can be very good
approximates. Since integration is anti-differentiation, the convergence rate should
increase, as observed by Mai-Duy and Tran-Cong [7]. The strong collocation is
similar in concept to the finite difference formulation. To find the set of expansion
coefficients, assume Eqs (1–2) are well-posed, and let L and ℘ operate upon the
interior and boundary respectively, yielding the following system of N equations
in N unknowns:

H−→α PDE =

[
LΦi,i LΦi,b

℘Φb,i ℘Φb,b

][ −→α i
−→α b

]
=

[
f
g

]
= θ. (9)

If H is invertible, then
−→α PDE= H−1θ. (10)

Then with expansion coefficients, {−→α PDE}, the numerical approximation to UPDE
is given by

UPDE= Aintp
−→α PDE. (11)

The L∞ error used in this document is:

L∞ = maxk | U(−→x k)exact- U(−→x k)PDE |. (12)

2 Dependency of errors on the general parameter set

The usual procedure presented in the meshless RBF literature to solve PDEs, IEs,
and IDEs is to choose either a common shape parameter or a distribution, {c2

j},
a set of data centers, {−→y } and a set of evaluation points, {−→x }, then find a set
of expansion coefficients by solving a set of N×N coupled linear or nonlinear
equations, then compare the error norms. The set of adjustable parameters, Q
={−→x ,−→y ,c2

j ,−→α } determines how well the MQ expansion approximates the true
solution; hence, different sets of Q will produce either very deep minimum norms,
shallow norms, saddlepoints, or even maximum norms of varying heights. The
objective to find the deepest minimum error norm possible that is acceptable.

The process of finding the expansion coefficients, {−→α }, by solving
systems of linear equations is unfortunately not always stable. The expansion
coefficients,{−→α }, depend upon the parameter subset, {−→x ,−→y ,c2

j}.

−→α = −→α (−→x ,−→y , ). (13)

Unless one is exceedingly fortunate, a single guess of Q1= {−→x ,−→y ,c2
j} will not

yield the minimum value of the functional,F . Unless one is exceedingly fortunate,
an initial guess of Q1 will not yield the minimum value of the functional. Near
the candidate minimum, −→x k, one can switch to the Newton–Raphson method; if

c2
j
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−→x k is within the ball of convergence, the Newton–Raphson method will converge
quadratically to the local root, according to the Kantorovich theorem.

The global minimization procedure would be greatly simplified if the C∞ RBFs
were ortho-normal, because one optimized basis function at a time could be
added to the optimized basis set. Although the modified Gram-Schmidt algorithm
is superior to the standard Gram-Schmidt algorithm, it unfortunately can loose
orthogonality due to finite precision round-off errors, see Paige et al. [8]. In a future
study, various studies of the number of digits will be investigated in the modified
Gram-Schmidt algorithm. However in the present study, the partial set, Q1={−→x ,
−→y ,c2

j} is specified, and the set of {−→α PDE}is found. Although the optimization
tools are not optimal, some advantages can be gained from experience such as:
• Using more spatial refinement in high gradient regions as indicated by the

forcing interior and boundary conditions,
• Extending the interior domain slightly outside of the computational

boundaries, see Fedoseyev et al. [14].
• Following Wertz [15], allow {c2

j}∂Ω >{c2
j}Ω\∂Ω.

• Some insight of the location of fine length scales can be gained from the
effect of the source functions, f(−→x ,t) over Ω\∂Ω and g(−→x ,t) on ∂Ω.
• In addition, Heryudonol and Driscoll [23] and Libre et al. [16] describe

techniques to refine certain regions efficiently.
Using either a very fine discretization everywhere in the domain may have a

firm theoretical foundation, but it leads to ill-conditioned system of equations on
finite precision computers. On real world computers, compromises must be made
to obtain the objective of the most accurate results in the most efficient manner
possible, such as the used of extended precision. It is not efficient, on a CPU count,
to use uniform very fine discretization over the entire domain, Ω, unless the length
scale is small everywhere.

The search for the optimal method to solve PDEs, IEs, and IDEs is evolving.
Huang et al. [9] and Cheng [10] demonstrated that when using extended precision
arithmetic, a very coarse distribution of data and evaluation centers coupled with
large shape parameters yields extremely accurate numerical solutions and is very
computationally efficient. Intuitively, this seems wrong because the CPU time
for multiple precision is much longer than for double precision. The reason why
intuition is incorrect is that although the CPU time per data and evaluation center
is larger with extended precision, the very fact that the total number of points
for specific target accuracy is orders of magnitude smaller, hence the total cost is
reduced many orders of magnitude.

3 Forming the global minimization method

A general unifying approach is presented by Galperin and Zheng [11, 12] to solve 
PDEs, IEs, and IDEs as a global minimization problem in which the interior 
operator, acting upon the C∞ RBFs is volume integrated over Ω\∂Ω and the 
boundary operator, ℘, acting upon the C∞ RBFs is integrated over each ∂Ωk.
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The functional, F , to be minimized, over the parameter set Q is:

min
q∈Q
F= $|

∫
Ω\∂Ω

(LU-f)d−→x |+(1−$)|
∫
∂Ω

(℘U-g)d−→x | ≤ η (14)

where Q is the set of free parameters, Q ={−→x , −→y , c2
j , α }, $ <1 and η is a

prescribed error criterion. Note that unlike the strong collocation method, there is
a prescribed amount of “fuzziness” in which the solution trajectory is allowed to
possess.

The integrations can be performed globally without the need for tessellation as
required by finite elements or the finite-element meshless methods. The operators,
L and ℘, act upon the RBFs first, then the results are integrated. Fortunately, in 2D,
the integrals of Lφ(−→x −−→y j)d

−→x and ℘φ(−→x −−→y j)d
−→x are integrated analytically

and stored as vectors.
The integrated results are stored as vectors:

ψ(−→y j) =
∫

Ω\∂Ω

Lφ(−→x -−→y j)d−→x , (15)

χ(−→y j) =
∫
∂Ω

℘φ(−→x -−→y j)d−→x . (16)

Then, the vectors are used to form a specific value of F(q) :

min
q∈Q
F(q) = $|

N∑
j=1

{ϑ(−→y j)−→α PDE −
∫

Ω\∂Ω

f)d−→x |+(1−$)|

×
N∑

j=1

κ(−→y j) −
∫
∂Ω

gd−→x | ≤ η. (17)

If one wishes to have a finite element analog, then local integration over the
tessellation can yield N equations in N unknowns.

Nonlinear optimization problems may have multiple local and global maxima,
minima, and saddle regions. Gradient based methods such as steepest descent,
Newton–Raphson or combinations thereof may only lead to the nearest local
or global minimum. Searching the complicated multi-dimensional landscape for
global minima can be exceedingly time-consuming since such minima may be
clustered closely to widely dispersed in parameter space. Although theoretically,
the Galperin and Zheng procedure eliminates the need to solve sets of linear or
nonlinear equations, global minimization requires a huge number of evaluations of
the functional, F . Fast reliable global minimization algorithms capable of dealing
with at least 4N parameters are not yet perfected. One way to minimize the number
of functional evaluations is reduce the total number of free parameters.
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4 Implementation of the Galperin–Zheng method

Experience has shown that the set of data and evaluation centers,optimal
shape parameters and expansion coefficients are inter-related.Changing either the
location and fill distance of the data centers and evaluation centers changes the
magnitude of the parameter, γ =c/h, that,in turn, changes the condition number
of the system involved in determining the expansion coefficients. While a uniform
mesh is nice for analysis, it is wasteful in higher dimensional problems (d>3),
see Kansa and Geiser [17]. The PDE forcing functions over Ω\∂Ω and boundary
conditions on ∂Ω usually correlate with the loci of maxima, minima, and inflection
points. By having a minimal number of data centers in such regions, a dense
covering is not necessary.

Aside from the general recipe of Madych and Nelson [5] and Madych 
[6] showing that the ratio of c/h should be as large as possible, practical 
recipes for choosing either a uniform or variable shape distribution still require 
more development. Luh [18–22] has made significant progress for interpolation 
problems for some of the more popular RBFs. Kansa [2, 3] found  using  the  
MQ RBF that, if the solutions are either monotonic increasing or decreasing, 
then the following power law works well:

c2
j = c2

min*(c2
max/c2

min)(j-1)/(N-1), j=1,2,. . . ,N, (18)

where c2
maxand c2

min are input estimates of the squares of the largest and smallest
length scales. Wertz et al. [15] demonstrated that the {c2

j }∂Ω associated with
boundaries should be larger than those associated with the interior.

The usual procedure is to choose a set of N {−→x } and {−→y } and either a single
shape parameter or a distribution of shape parameters, then solve an N×N set of
equations to find the expansion coefficients. To overcome the limitations of double
precision, the MATLAB compatible multi-precision package was obtained from
www.advanpix.com. To improve the convergence rate, ξ should become very large.
This can be accomplished in two ways: (1) The h-scheme (spatial refinement)
increases the number, Nh, of data centers, but a relatively small <c2

j>. (2) The c-
scheme increases c, but requires a significantly smaller of data centers, Nc,where
Nc << Nh; the c-scheme requires O(N3

c) << O(N3
h) operations. For purposes

of efficiency, the c-scheme is superior and preferable over the h-scheme. The
disadvantage of either the h-scheme,or the c-scheme is that as ξ→∞, the system
of linear equations becomes very ill-conditioned and subject to extreme round-off
errors on computers with limited arithmetic precision.

5 Numerical results

There are several steps involved in calculating the Galperin–Zheng global
minimization, see Eq (17). Firstly, the data centers are tensor product meshes;
in each coordinate direction, the well-known geometric progression of increasing
finer data centers were generated as x1 or x2 approaches unity. The boundary itself
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is defined by the corners: (0,0), (1,0), (1,1), and (0,1). Following Fedoseyev et al.
[14]. extra data centers are placed slightly beyond the boundary locus by adding
1D randomly generated numbers multiplied by 2.03e-3 in the x1-direction and
2.51e-3 in the x2-direction. There are Nx1 points along the x1-axis and Nx2 points
along the x2-axis.

The test problem is the Poisson equation over a unit 2D square:

∇2U(x1,x2) = (a2 + b2)exp(ax1 + bx2) over Ω, (19)

(a and b are parameters that will be varied) with the following Dirichlet conditions
on

U(x1 = 0, x2) = exp(ax1) on ∂Ω(x2 = 0)

and U(x1, x2) = exp(bx2) on ∂Ω( x1 = 0), (20)

and Neumann conditions on the opposite boundaries:

∂U/∂x1 = a · exp(ax1 + b) on ∂Ω(x2 = 1)

and ∂U/∂x2 = b · exp(a + bx2) on ∂Ω(x1 = 1). (21)

The exact solution is:

U(x1,x2),= exp(ax1 + bx2). (22)

The test domain was chosen over a unit square, and various exponential parameters
for the forcing function, f, were chosen: The parameters, a and b were specified
as a = 2 and b = 3. The maximum values of U at x1 = x2 = 1, is, U= exp(5) =
148.4132.

Since most scientists and engineers are familiar with finite difference, element,
or volume methods, the customary procedure is to use extremely fine meshing.
This approach is workable for 2 and 3-dimensional problems, but impractical
for 6D Boltzmann equations due to the curse of dimensionality. To minimize the
number of data centers, a geometric progression of increasingly finer discretization
was used, and the origin was appended in the construction of the tensor product
mesh. In the paper of Fedoseyev et al. [14], the computational domain, Ω was
extended slightly beyond the boundaries, ∂Ωk given by the line segments of the
unit square: (0,1) (0,0), (0,1) (1,1) (0,1), The domain was extended to 1.022 in the
x1 direction and 1.02412 in the x2 direction.

The highlights of the parameter tests are summarized below:
• The shape parameters corresponding to either the two Dirichlet and two

Neumann boundary data centers were multiplied by adjustable input factors,
see Wertz et al. [15].
• While the power law recipe seems to work for monotonic functions, and

yields the desired wavelet relations, see [4]; this power-law recipe is too
simplistic and is used only as a temporary measure.
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• Since the maximum value of U occurs at x1 = x2 = 1, the geometric pro-
gression algorithm produced successively finer discretization in the x1 and
x2 directions. The first point was fixed at 0.16 for x1 and 0.18 for x2.
• Afterwards, the minimum values of x1 and x2 was -0.02 and the maximum

values of x1 and x2 was 1.025 were appended to the tensor product 2D mesh.
The boundary locus line segments : (0,0), (0,1), (1,1), (1,0) were also added..
and
• The set of expansion coefficients, {−→α PDE}, was obtained by solving the

point collocation for the PDE and boundary conditions.
• Using the set of expansion coefficients, {−→α PDE}, and the integrated basis

functions over Ω\∂Ω and ∂Ω, the global L∞error was calculated for various
choices of evaluation, data, {c2

j} tuneable parameters. and number of digits
of precision.

6 Summary of results

The L∞ errors obtained from solving the set PDE expansion coefficients, {αPDE},
calculating UPDE with these expansion coefficients relative to the exact solution
ranged from 0.186 to 2e-28 with the total number of points ranging from 12 to
110. Intuitively, systems of equations with good condition numbers should yield
very accurate answers. However, consider the following counter examples:

N = 56, ndigit = 16, Kpde = 8.939e+13, and L∞ = 0.469924,
N = 56, ndigit = 128, Kpde = 2.199e+13, and L∞ = 0. 0.186132.
To analyze numerically the question whether the weak formulation is viable,

several steps are required.
1. Choose the distribution of {−→x } and {−→y } and the extent that the interior

points extend beyond the boundary.
2. Choose a distribution of shape parameters and the multiplicative factors for

the Neumann and Dirichlet shape parameters.
3. Construct the MQ basis functions and the integrated 2D RBFs for the

interior and the 1D integrated Neumann and Dirichlet RBFs, and choose
the weighting factor, $, for the interior and boundary problem.

4. Construct the strong form system of equation and find { αPDE}
5. Substitute { αPDE} into the strong form and reject if the L∞ error exceeds.
6. Continue varying the input parameters until the deepest L∞ error is

achieved.

min
q∈Q
F(q)= $|

∫
Ω\∂Ω

(LU-f)d−→x |+(1−$)|
∫
∂Ω

(℘U-g)d−→x | ≤ η. (23)

The following table shows the constants a and b for the forcing term, ax1 and ax2

that are the first terms, respectively for the geometric progression of the x1 and x2

coordinates, c2
max and c2

min are the maximum and minimum parameters for the
power law shape parameter distribution, χDir and χNeu are the multiplicative
parameters to modify the shape parameters associated with the Dirichlet and
Neumann boundary coordinates, respectively, KPDE is the condition number
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Table 1: RMS errors of  the Galperin–Zheng formulation: first term of 
geometric progression: ax1 = 0.27, ax2 =  0.277 and exponential factors: 
a = 2, b = 3 held constant.

ndigits c2max c2min χDir χNeu KPDE errorstrong F(q)

N 32 1.021 0.9149 0.5 0.85 3.221013 1.8910−25 0.0033

56 128 1.021 0.9149 0.5 0.85 3.641013 1.8910−25 0.0022

56 512 1.0e5 0.0019 0.0007 79.31 3.641013 2.4410−25 0.0022

56 1024 1.0e5 0.0019 0.0007 90.0 3.221013 2.9110−25 0.0011

63 512 1.021 0.9149 1 1 3.64108 3.4910−30 0.0003

90 32 1.021 0.9149 0.5 0.85 1.461018 1.2710−22 0.0060

90 128 1.021 0.9149 0.5 0.85 2.481018 1.3610−22 0.0002

associated with the strong form of the PDE matrix, errorstrong and errorweak are
the strong and weak form L∞ norm errors.

Table 1 shows the results of increasing the number data centers for the Galperin–
Zheng weak formulation. During previous testing, and using an increasing number
of digits of precision, the values of c2

min and c2
max were pushed, fixing the set,

{c2
j}, using the set {α} from the solution of the point collocation scheme, and

fixing the starting points of the geometric progression for the tensor product
meshes.

Note that increasing the number of data centers, h-refinement, while fixing
the set, {c2

j} does show successively smaller RMS errors, but it is questionable
whether the extra effort is warranted. The point of this exercise is to provide a good
starting point for the global optimization process in which all free parameters are
varied to find very deep global minima instead of a local minimum.

7 Discussion

The papers of Galperin and Zheng [11, 12] offer a general framework for  the  
numerical solution of PDEs, IEs, and IDEs. The test solutions are expanded in 
terms of C∞ RBFs, then operated upon by the domain and boundary operators that 
are volume and surface integrated, respectively. A functional F(q) is constructed 
from these test expansions that is constrained to be less than or equal to 
an error bound. The functional is minimized by global optimization methods 
that are unfortunately not very robust given a large number of parameters. 
Presently, a decoupling process is required in which the set of data and evaluation 
centers are input parameters as well as either a uniform or variable shape 
parameter distribution, then the expansion coefficients a re s olved a s a  s et of 
possible ill-conditioned equation systems requiring extended arithmetic precision.
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 Unless some breakthrough in the global minimization algorithm is 
developed, parameter splitting methods will need to be continued to be used. 
Optimizing the minimization procedure will require further research and 
development.

References

[1] Harris, J.W., Stocker, H., Handbook of Mathematics and Computational
Science, Springer Verlag, New York, 1998.

[2] Kansa, E.J., Comput Math Appl., 19(8/9): pp.127–147, 1990.
[3] Kansa, E.J., Comput. Math. Appl., 19(6–8): pp.147–161, 1990.
[4] Sarra, S.A., Kansa, E.J., Multiquadric Radial Basis Function Approximation

Methods for the Numerical Solution of Partial Differential Equations,
Advances in Computational Mechanics, Vol. 2, 2009, ISSN:1940–5820.

[5] Madych, W.R., Nelson S.A., Math. Comp. 54: pp.211–230, 1990.
[6] Madych, W.R., Comput. Math. Applic. 24(12): pp.121–138, 1992.
[7] Mai-Duy, N., Tran-Cong, T., Int. J. Numer. Methods in Fluids 37(1): pp.65–

86, 2001.
[8] Paige, C.C., Rosloznik, M., Strakos. Z., SIAM J. Matrix Anal. Applic. v28,

pp.264–284, 2006.
[9] Huang, C.-S., Lee, C.-F., Cheng, A.H.D., Eng. Anal. Bound. Elem. 31:

pp.615–623, 2007.
[10] Cheng, A.H.D., Eng. Anal. Bound Elem. 36: pp.220–239, 2012.
[11] Galperin, E.A., Zheng, Q., Comput. Math. Applic. 25(10/11): pp.103–118,

1993.
[12] Galperin, E.A., Zheng, Q., Comput. Math. Applic. 25(10/11): pp.119–124,

1993.
[13] Galperin, E.A., Kansa, E.J., Makroglou. A., Nelson, S.A., J. Comput. Appl.

Math. 115: pp.193–211, 2000.
[14] Fedoseyev, A.I., Friedman, M.J., Kansa, E.J., Comput. Math. Appl. 43(3–5):

pp.491–500, 2002.
[15] Wertz, J., Kansa, E.J., Ling, L., Comput. Math. Applic. 51(8): pp.1335–1348,

2006.
[16] Libre, N.A., Emdadi, A., Kansa, E.J., Shekarchi, M., Rahimian, M., Eng.

Anal. Bound. Elem. 33: pp.901–914, 2009.
[17] Kansa, E.J. and Geiser. J., Eng. Anal. Bound. Elem. 37: pp.637–645, 2013.
[18] Luh, L.-T., Inter. J. Numer. Methods Appl. 1(2): pp.101–120, 2009.
[19] Luh, L.-T., arXiv:pp.1002.2082, 2010.
[20] Luh, L.-T., Eng. Anal. Boundary Elem. 37(5): pp.988–993, 2013.
[21] Luh, L.-T., arXiv:pp.1004.0759, 2010.
[22] Luh, L.-T., Inter. J. Numer. Methods Appl. 1(2): pp.155–174, 2009.
[23] Heryudono, A.R.H. Driscoll, T.A. Radial  Basis  Function Interpolation  on 

Irregular  Domain  through  Conformal Transplantation,  Journal of Scientific 
Computing, 44, pp. 289 300, 2010.–

 WIT Transactions on Modelling and Simulation, Vol 59,
 www.witpress.com, ISSN 1743-355X (on-line) 

© 2015 WIT Press

Computational Methods and Experimental Measurements XVII  83




