
On the parallelization of bio-heat transfer
problem using input file affinity measure
with MPI

S. U. Ewedafe1 & R. H. Shariffudin2
1Department of Computing, Baze University, Abuja, Nigeria
2Faculty of Science, Institute of Mathematical Sciences,
University of Malaya, Malaysia

Abstract

In this paper, a method based on applying Successive Over-Relaxation (SOR) to
find the solution of 2-Dimensional Bio-Heat Transfer Problem (2DBHTP) on a
distributed computing environment using Input File Affinity Measure (Iaff) with
Message Passing Interface (MPI) is introduced. A finite difference discretization
is developed to solve the 2DBHTP since 2DBHTP requires the evaluation of
temporal and spatial distributions of temperature. The platform gives us better
predictions of the effects of thermal physical properties of temperature
distribution. This work proposes a parallel overhead with overlapping
communication in its implementation using MPI. Based on the implementation
of the MPI distributed computing environment, we present a performance
improvement strategy running on the master-slave platform. Parallel
comparisons of the method were experimentally evaluated, and parallel results
show speedup and efficiency on a various number of mesh sizes. The method
used combines elements of numerical stability and parallel algorithm design.
Keywords: 2DBHTP, SOR, Iaff, MPI, speedup, discretization, finite difference,
spatial temperature, parallel overhead, performance.

1 0B0BIntroduction

Computing infrastructures are reaching an unprecedented degree of complexity.
First, parallel processing is coming to mainstream, because of the frequency and
power consumption wall that leads to the design of multi-core processors.
Second, there is a wide adoption of distributed processing technologies because

Computational Methods and Experimental Measurements XVI 441

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

doi:10.2495/CMEM130361

of the deployment of the Internet and consequently large-scale grid and cloud
infrastructures. All these combined together make programming of computing
infrastructure a very difficult challenge. Programmers have to face both parallel
and distributed programming paradigms when designing an application and
several software codes that are executed on various computing resources spread
over the Internet within a grid or cloud-base infrastructure [1]. In the world of
parallel computing MPI is the de facto standard for implementing programs on
multiprocessors. To help with program development under a distributed
computing environment a number of software tools have been developed. MPI
[2] is chosen here for the parallelization. Many applications are “embarrassingly”
parallel and require minimal performance out of MPI. These applications exploit
coarse grain parallelism and communicate rarely.
 However, program development for distributed memory parallel computers is
time-consuming and error prone, as the programmer is forced to manage both
parallelism and communication. Distributed systems can increase application
performance by a significant amount and the incremental enhancement of a
network-based concurrent computing environment is usually straightforward
because of the availability of high bandwidth networks [3, 4]. The natural
programming style under a distributed system is therefore the Multiple
Instructions Multiple Data (MIMD) [3–6]. The basic idea is to split a program
into a few smaller tasks and to allocate these tasks to several processors to be
executed simultaneously. Thus the total execution time can be reduced to just a
fraction of that of a uniprocessor computer.
 Studying Bio-heat transfer in the human body has been a hot topic and is
useful for designing clinical thermal treatment equipments, for accurately
evaluating skin burn and for establishing thermal protections for various
purposes. The Bio-heat transfer is the heat exchange that takes place between the
blood vessels and the surrounding tissues. Monitoring the blood flow using the
techniques has great advantage in the study of human physiological aspects. This
requires a mathematical model which relates the heat transfer between the
perfuse tissue and the blood. The theoretical analysis of heat transfer design has
undergone a lot of research over the years, from the popular Penne’s bio-heat
transfer equation proposed in 1948 to the latest one proposed by Deng and Liu
[7]. Many of the Bio-heat transfer problem by Penne’s account for the ability of
the tissue to remove heat by diffusion and perfusion of tissue by blood.
Predictions of heat transport have been carried out by Chinmay [8] and Liu and
Xu [9]. The major concern in the modeling of the Bio-heat is the accurate
continuum representation of the heat transfer in the living tissue incorporating
the effect of blood flow, due to the presence of two heat sources. Penne’s
assumes that for heat transfer to take place there must be two heat sources, as in
heat produced by the metabolism and the heat transfer from the blood flow
surrounding tissue at each point of the forearm. Effects of thermal properties and
geometrical dimensions on the skin burn injuries have been discussed. [9, 10]
proposed a comparison of 1D and 2D programmed for predicting the state of
skin burn. Liu et al. [11] used a finite difference method to solve the BHTP − a
triple-layered skin structure composed of epidermis, dermis, and subcutaneous.

442 Computational Methods and Experimental Measurements XVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

Dai and Zhang [12] developed a three-level unconditional stable finite difference
scheme and used a domain decomposition strategy for solving the 1-D BHTP for
the same three-layered skin structure.
 In this paper, a method based on applying SOR to find the solution of
2DBHTP on a distributed computing environment using Iaff with MPI is
implemented. We also assess parallel performance improvement in terms of
speedup and efficiency. The rest of the paper is organized as follows: Section 2
introduces the model for the 2DBHTP. Section 3 gives the parallel
implementation using Iaff. Section 4 introduces the results and discussion.
Finally, a conclusion is included in Section 5.

2 1B1BBio-heat model for 2-d

Modern clinical treatments and medicines such as cryosurgery, cryopreservation,
cancer hyperthermia, and thermal disease diagnostics, require the understanding
of thermal life phenomena and temperature behaviour in living tissues [13]. The
well-known Penne’s equation and the energy balance for a control volume of
tissue with volumetric blood flow and metabolism yields the general Bio-heat

transfer equations. , pc are densities and specific heat of tissue, b and bc are

blood perfusion rate and specific heat of blood, mq is the volumetric metabolic

heat generation, aU is the arterial temperature, U is the nodal temperature. The

bio-heat problem is given as:

0,10,10,)(
2

2

2

2

tyxqUUc
y

U

x

U

t

U
c mabbp

,
11

2

2

2

2

p

mbb
a

bb

pp pc

q
U

c

c
U

c

c

y

U

cx

U

pct

U

(1)

 This further simplifies into the form:

)(
11 '''

2

2

2

2

bb

m
a

bbbb

p c

q
U

c

c
U

c

c

y

U

cx

U

pct

U

(2)

Assume mq to be constant, and denote m
a

b b

q
U U

c

 , (0)b b

p

c
b

c

 and

1
(0)

p

c
c

 . We can obtain the simplified form of the 2-D Penne’s equation

with the initial and boundary conditions given below:

 ,
2

2

2

2

bUbU
y

U

x

U
c

t

U
 (3)

with initial condition

Computational Methods and Experimental Measurements XVI 443

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

),()0,,(yxfyxU (4)

and boundary conditions

),(),1,(),,(),0,(

),(),,1(),,(),,0(

43

21

txftxUtxftxU

tyftyUtyftyU
 (5)

When the explicit scheme is used, we write using the same finite-difference
scheme:

bUbU

x

UUU

x

UUU
c

t

UU

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

,

2

1,,1,

2

,1,,1,
1

, 22

,

The temperature of the node in the scheme formulation takes the form:

tUbUtb
x

t
c

UUUU
x

t
cU

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

,2

1,1,,1,12
1

,

41
 (6)

2.1 5B5BStationary methods for 2-d bio-heat equation

If we use the central differences for both xxU

and yyU , and the forward

difference for ,tU into (3) and let 222 yx we have:

tUbtUb

UUUUU
tc

UU

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

,

,1,1,,1,12,
1

, 4

 mjni ,1,,1 (7)

Let
2

c t
Fo

, hence

tUbtUb

UUUUUFoUU
n

ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

n
ji

,

,1,1,,1,1,
1

, 4

It is stable in one spatial dimension (1-D) only if .2/1/ 2 t In two

dimensions (2-D) this becomes .4/1/ 2 t Suppose we try to take the

largest possible time step, and set .4/2tc Then eqn (7) becomes:

444 Computational Methods and Experimental Measurements XVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

 tUbtUbUUUUU n
ji

n
ji

n
ji

n
ji

n
ji

n
ji ,1,1,,1,1
1

, 4

1
 (8)

thus the algorithm consists of using the average of U at its four nearest neighbor
points on the grid (plus contribution from the source). If we are proceeding along
the rows, incrementing j for fixed i , we have the formula eqn (8) as:

 tUbtUbUUUUU n
ji

n
ji

n
ji

n
ji

n
ji

n
ji ,

1
1,1,

1
,1,1

1
, 4

1
,

 mjni ,1,,1 (9)

This method is also slowly converging and only of theoretical interest, but some
analysis of it will be instructive. If we have approximate values of the unknowns
at each grid point, this equation can be used to generate new values. We call

)(nU the current values of the unknowns at each iteration k and (1)nU the value
in the next iteration. We define a scalar (0 2)n n and apply eqn (9) to all

interior points),(ji . Hence, we have:

n

ji
n

ji UGSU ,
1
1,)1(*
 (10)

where GS is the calculated value of the Gauss-Seidel method and is omega
with values ranging from 0 2 .

3 2B2BParallel implementation

3.1 6B6BThe cluster system

The implementation is done on a distributed computing environment (Armadillo
Generation Cluster) consisting of 48 Intel Pentium at 1.73GHZ and 0.99GB
RAM. Communication is through a fast Ethernet of 100 MB per second running
Linux. The cluster performance has high memory bandwidth with a message
passing supported by MPI [14]. We concentrate on basic message operations:
blocking send, blocking receives, non-blocking send, and non-blocking receive.
Note that MPI provides a rather comprehensive set of messaging operations.
MPI primitive communication operation is the blocking send to blocking receive.

At each time step we have to evaluate 1nv values at lm'' grid points, where l''
is the number of grid points along the x axis. Suppose we are implementing this
method on an R S mesh connected computer. Denote the workers by

i1,j1P :i1 1, 2, , R and R l, j1 1, 2, ,S and S M . Let 1

1
L

R

and

1

M
M

S

 where is the smallest integer part. Divide the lm'' grid points

Computational Methods and Experimental Measurements XVI 445

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

into 'RS' groups so that each group contains at most 1 1(L 1)(M 1) grid points

and at least 1 1L M grid points. Denote these groups by

i1j1G :i1 1,2, ,R, j1 1,2, ,S . Design i1j1G , such that it contains the

following grid points

1MorM,2,1,j

1LorL,2,1,i:)Y,(X
G

11

i1j1)(j111)(i1

i1j1

Assign the group i1j1G , to the workers i1,j1 1 1P :i 1, 2, , R, for, j 1, 2, ,S.

Each worker computes its assigned group 1n
ji,v values in the required number of

sweeps. At the th(p 1/2) sweep the workers compute 1/2)th(p
ji,v values of its

assigned groups. For the th(p 1/2) level the worker i1j1P requires one value from

the worker i1 1j1 i1 1j1P or P , worker. In the th(p 1/2) level the communication

between the workers is done row-wise. After communication between the

workers is completed then each worker ijP computes the 1/2p
ji,v values. For the

th(p 1) sweep each worker i1j1P requires one value from the i1 1j1 i1 1j1P or P

worker. Then each worker computes the values 1)th(p
ji,v of its assigned group.

Statements need to be inserted to select which portions of the code will be
executed by each processor. We focus our evaluation on MPI because it serves as
an important foundation for a large group of applications.

3.1.1 8B8BThe Iaff
With reference to [15], the Iaff is discussed. The platform introduces each task
going through three phrases during execution of a parameter-sweep application:
(1) an initialization phase. The duration of this phase is equal to tinit. This phase
includes the overhead incurred by the master to initiate a data transfer to a slave,
(2) a computational phase. The duration of this phase is equal to tcomp. Any
additional overhead related to the reception of input files by a worker node is
also included in this phase and (3) a completion phase, where the output file is
sent back to the master and the master task is completed. The duration of this
phase is equal to tend. Therefore, the initialization phase of one slave can occur

concurrently with the completion phase of another worker node. However, the
total execution time of a task is equal to

 endcompinittotal tttt (11)

 One processor is the master and the other processors are workers. effP is the

effective number of processors needed to run an application with no idle periods
on any worker processor. A processor may have idle periods if:

 init
'
comp 1)t(Pt (12)

446 Computational Methods and Experimental Measurements XVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

effP is then given by the following equation:

 1

t

t
P

init

'
comp

eff (13)

the total number of tasks to be executed on a processor is at most

P

T
M (14)

for a platform with effP processors, the upper bound for the total execution time

(makespan) will be

 init
'
compinitmakespan 1)t(P)tM(tt (15)

the second term in the right hand side of eqn (15) shows the time needed to start
the first (P – 1) tasks in the other P – 1 processors. If we have a platform where

the number of processors is larger than effP the overall makespan is dominated

by communication times between the master and the workers. We then have

 '
compinitmakespan tMPtt (16)

the set of eqn (12)–(14) will be considered in subsequent sections of this paper. It
is worth noting that eqn (15) is valid when workers are constantly busy, either
performing computation or communication. Eqn (16) is applicable when workers
have idle periods, i.e., are not performing either computation or communication.
eqn (12) occurs mainly in two cases:
 For very large platforms (P large).

 For applications with small
init

comp

t

t
ratio, such as fine-grain applications.

 In order to measure the degree of affinity of a set of tasks concerning their
input files, the concept of input file affinity is introduced. Given a set of E of
tasks, composed of R tasks, 1 2 RE T ,T , ,T , and the set Q of the X input files

needed by the tasks belonging to group E, 1 2 xQ f ,f , ,f .

4 3B3BResults and discussion

4.1 7B7BBenchmark problem

We implement the SOR technique on the 2DBHTP. We assume a platform
composed of variable number of heterogeneous processors. The solution domain
was divided into rectangular blocks. The experiment is demonstrated on meshes
of 100×100, 200×200 and 400×400, respectively. Tables 2–4 show the various
performance timing.

Computational Methods and Experimental Measurements XVI 447

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

 ,
2

2

2

2

bUbU
y

U

x

U
c

t

U
 (17)

The boundary condition and initial condition posed are:

 0

0),1,(

0),0,(

0),,1(

0),,0(

t

txU

txU

tyU

tyU

 (18)

 The cell size was chosen as .yx the values of the physical properties

in our test cases are chosen to be 31000 / ,kg m 04200 / ,bc c J kg c
30.5 / ,bw kg m temperature is set to be 0

0 12 .U c Table 1 provides a

comparison of the accuracy of the methods under consideration in terms of
absolute error.

Table 1: Sequential result for 2DBHTP with various schemes.

Method GS SOR

Av. Abs. Err. 10.5 × 10−4 8.7 × 10−4

RMS 5.6 × 10−4 4.3 × 10−7

It 11 9

x 1 × 10−1 1 × 10−1

t 2 × 10−4 2 × 10−4

 5 × 10−1 5 × 10−1

t 1.8 × 10−3 1.8 × 10−3

eps 1 × 10−4 1 × 10−4

 The experiment is demonstrated on meshes of 200×200 and 300×300 for
block sizes of 100 and 200, respectively, both for MPI. The tables show the
various performance timings.

4.1.1 9B9BParallel efficiency
The speed-up and efficiency obtained for various sizes of 200×200 to 300×300
are for various numbers of sub-domains; from B = 100 to 200 as listed in Tables
1–4. In these tables we listed the wall (elapsed) time for the master task, TW,
the master CPU time, TM, the average worker computational time, TSC and the
average worker data communication time TSD all in seconds. The speed-up and
efficiency versus the number of processors are shown in Fig. 1 and Fig. 2
respectively, with block number B as a parameter. The results show that the
parallel efficiency increases with increasing grid size for a given block number

448 Computational Methods and Experimental Measurements XVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

Table 2: A mesh of 300×300, with B = 50 blocks and Niter = 100 for MPI.

Schemes N Tw Tm Tsd Tsc MPI

T

Spar

Epar

 1 945 46 27 819 593 1.000 1.000
 2 652 45 25 572 364.3 1.628 0.814
 4 617 45 25 289 255.21 2.324 0.581
 8 524 45 25 229 208.47 2.845 0.356
SOR 16 382 45 25 152 183.0 3.241 0.203
 20 262 45 25 107 143.68 4.128 0.206
 24 195 45 25 89 122.92 4.825 0.201
 30 133 45 25 31 111.46 5.321 0.177
 38 92 45 25 20 101.12 5.924 0.156
 48 83 45 25 10 94.97 6.245 0.130

Table 3: A mesh of 300×300, with B = 100 blocks and Niter = 100 for MPI.

Schemes N Tw Tm Tsd Tsc MPI

T

Spar

Epar

 1 1326 68 30 1109 773.7 1.000 1.000
 2 921 66 28 984 440 1.758 0.879
 4 875 66 28 752 285.14 2.713 0.678
 8 704 66 28 561 235.35 3.287 0.411
SOR 16 562 66 28 329 194.51 3.978 0.249
 20 431 66 28 284 161.28 4.797 0.240
 24 349 66 28 201 138.74 5.577 0.232
 30 298 66 28 162 114.49 6.758 0.225
 38 211 66 28 144 99.25 7.795 0.205
 48 184 66 28 94 95.12 8.134 0.169

Table 4: A mesh of 300×300, with B = 200 blocks and Niter = 100 for MPI.

Schemes N Tw Tm Tsd Tsc MPI

T

Spar

Epar

 1 2431 97 62 1499 1144 1.000 1.000
 2 1764 95 60 1103 644.03 1.776 0.888
 4 987 95 60 865 387.76 2.950 0.738
 8 834 95 60 679 347.57 3.291 0.411
SOR 16 698 95 60 482 234.23 4.884 0.305
 20 573 95 60 321 214.14 5.342 0.267
 24 432 95 60 294 201.76 5.670 0.236
 30 359 95 60 210 165.13 6.928 0.231
 38 286 95 60 194 144.46 7.919 0.208
 48 231 95 60 121 134.70 8.493 0.177

Computational Methods and Experimental Measurements XVI 449

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

using MPI and decreases with the increasing block number for given grid size. In
Tables 1–4, the master time TM is constant when the number of processors
increases for a given grid size and number of sub-domains. The master program
is responsible for (1) sending updated variables to worker (T1), (2) assigning task
to worker (T2), (3) waiting for the worker to execute tasks (T3), and (4) receiving
the results (T4).

Figure 1: Speed-up versus the number of workers for various block sizes.
Mesh 300×300 MPI.

Figure 2: Parallel efficiency versus the number of workers for various block
sizes. Mesh 300×300 MPI.

 As the total number of processors increase, the bottleneck of parallel
computers appears and the global reduction consumes a large part of time.

5 4B4BConclusions

A thorough analysis of the 2DBHTP using SOR iterative technique and Iaff on
master-worker paradigm was made, which shows that significantly better
efficiency can be obtained. The efficiency is accomplished by overlapping
computation of the sequential and parallel phases of the algorithm. The Iaff on
master-worker paradigm has been emphasized. Experiments with 2DBHTP
revealed that the rate of convergence decreases as the number of processor
increases for various mesh sizes. Our goal is shown on the interleaving of
communication/computation that is at the core of the MPI performance, and the
proposed methods combine elements of numerical stability and parallel
algorithm design without increasing computational costs. Here, MPI is used for

0

5

10

1 2 3 4 5 6 7 8 9 10

Sp
e
e
d
u
p

Number of Workers

B=50 SOR

B=100 SOR

B=200 SOR

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

Ef
fi
ci
e
n
cy

Number of Workers

B=50 SOR

B=100 SOR

B=200 SOR

450 Computational Methods and Experimental Measurements XVI

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

its performance and portability. On the basis of the current parallelization
strategy, more sophisticated models can be attacked efficiently.

References

[1] Hinde, L. B. Perez, C. and Priol, T., Extending Software Component
Models with the Master-Worker Paradigm, Parallel Computing 36, pp. 86–
103, 2010.

[2] Foster, I. Geist, J. Groop, W. and Lust, E., Wide-Area Implementations of
the MPI, Parallel Computing 24 pp. 1735–1749, 1998.

[3] Callahan D, and Kennedy K., Compiling Programs for Distributed Memory
Multiprocessors, Journal of Supercomputer 2, pp. 151–169, 1988.

[4] Evans D. J., and Hassan B.: Numerical Solution of the Telegraph Equation
by the AGE Method Int’l Journal of Computer Mathematics (2003) 80 (10)
1289–1297.

[5] Chypher R., Ho A., et al., Architectural Requirements of Parallel Scientific
Applications with Explicit Communications Computer Architecture, 12
pp. 2–13, 1993.

[6] Peizong L., and Kedem Z., Automatic Data and Computation
Decomposition on Distributed Memory Parallel Computers ACM
Transactions on Programming Languages and Systems, 24(1), pp. 1–50,
2002.

[7] Deng, Z. S. and Liu, J., Analytic Study on Bio-Heat Transfer Problems with
Spatial Heating on Skin Surface or Inside Biological Bodies, ASME Journal
of Biomechanics Eng., 124 pp. 638–649, 2002.

[8] Chinmay, M., Bio-Heat Transfer Modeling, Infrared Imagine, pp. 15–31,
2005.

[9] Liu, J. and Xu, L. X., Estimation of Blood Perfusion Using Phase Shift
Temperature Response to Sinusoidal Heating at Skin Surfaces, IEEE Trans.
Biomed. Eng., 46, pp. 1037–1043, 2001.

[10] Rubinsky, B. et al., Analysis of a Steufen-Like Problem in a Biological
Tissue around a Cryosurgical Problem. ASME J. Biomech. Eng., 98,
pp. 514–519, 1976.

[11] Liu J., Chen X. and Xu L., New Thermal Wave Aspects on Burn
Evaluation of Skin Subjected to Instantaneous Heating, IEEE Trans.
Biomed. Engrg., 46, pp. 420–428, 1999.

[12] Dai W. Z. and Zhang J., A Three Level Finite Difference Scheme for
Solving the Pennes’s Bio-Heat Transfer in a triple layered Skin Structure,
Technical Report No. 343, Department of Computer Science, University
Science, University of Kentucky Lexingtn, KY 835, 2002.

[13] Jennifer, J. Z. et al., A Two Level Finite Difference Scheme for 1-D
Penne’s Bio-Heat Equation, 2002.

[14] Groop, W., Lusk, E. and Skjellum, A., Using MPI, Portable and Parallel
Programming with the Message Passing Interface, 2nd Ed., Cambridge MA,
MIT Press, 1999.

[15] Fabricio, D. S. Senger, H., Bag of Task running on Master-Slave with Input
File, Parallel Computing 35, pp. 57–71, 2009.

Computational Methods and Experimental Measurements XVI 451

 www.witpress.com, ISSN 1743-355X (on-line)
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

