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Abstract 

This paper investigates the stability analysis of plates made of functionally 
graded material (FGM) and subjected to electro-mechanical loading. A thick 
square FGM plate with piezoelectric actuator and sensor at top and bottom face 
is considered. The material properties are assumed to be graded along the 
thickness direction according to simple power-law distribution in terms of the 
volume fraction of the constituents, while the Poisson’s ratio is assumed to be 
constant. The plate is simply supported at all edges. Using first order (FOST) and 
higher order shear deformation theories (HOST12), the finite element model is 
derived with von-Karman hypothesis and as a degenerated shell element. The 
displacement component of the present model is expanded in Taylor’s series in 
terms of thickness co-ordinate. The governing equilibrium equation is obtained 
by using the principle of minimum potential energy and the solution for critical 
buckling load is obtained by solving the eigen value problem. The stability 
analysis of piezoelectric FG plate is carried out to present the effect of power law 
index and applied mechanical pressure. Results reveal that buckling strength 
increases with an increase in volume fraction. It can also be improved using 
piezo effects. The present analysis is carried out on newly introduced metal 
based FGM which is a mixture of aluminum and stainless steel which exhibits 
corrosion resistance as well as high strength property in a single material.  
Keyword: functionally graded material, finite element method, piezoelectric 
material, FOST, HOST12, eigen value problem, electro-mechanical loading. 
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1 Introduction 

Functionally graded materials are the microscopically inhomogeneous composite 
materials which exhibit smooth and continuous change of material properties 
along the thickness direction. Laminated composite structures face problems 
because of abrupt change in material properties and weakness of interfaces of 
layers placed between two adjacent laminates of composite structures. Such 
problems are overcome by using the FGM’s. The advances in composite 
technology have lead to the increasing application of piezo laminated structure 
due to their sensing and actuating properties. Also, these structures have self-
diagnostic and self-controlling capabilities. These structures can control the 
magnitude and mode of vibrations. Stability of the structural systems can also be 
enhanced because of their direct and converse piezoelectric effects.  
     Liew et al. [1] presented postbuckling behavior of piezoelectric FGM plate 
subject to thermo-electro-mechanical loading based on Reddy’s higher-order 
shear deformation plate theory. Galerkin’s differential quadrature iteration 
algorithm is proposed for solution of the non-linear partial differential governing 
equations. Shen [2] presented the postbuckling analysis for a simply supported, 
shear deformable functionally graded plate with piezoelectric actuators subjected 
to the combined action of mechanical, electrical and thermal loads. Shen [3] also 
presented the thermal postbuckling analysis for a simply supported shear 
deformable functionally graded plate under thermal loading]. The compressive 
postbuckling under thermal environments and thermal postbuckling due to a 
uniform temperature rise for a simply supported shear deformable functionally 
graded plate with piezoelectric fiber reinforced composite (PFRC) actuators has 
also been reported by Shen [4]. The above works done by Shen were based on 
higher order shear deformation plate theory and a two step perturbation 
technique was employed to determine buckling loads and postbuckling 
equilibrium paths. Chen et al. [5] used the element free Galerkin method to 
analyze buckling of piezoelectric FGM rectangular plates subjected to non-
uniformly distributed loads, heat and voltage. Shariyat [6] developed finite 
element formulation based on a higher-order shear deformation theory to present 
the vibration and dynamic buckling of FGM rectangular plates with surface 
bonded piezoelectric sensors and actuators under the influence of thermo-electro-
mechanical loading. A number of works have been carried out on stability 
analysis of smart FGM plate subjected to thermo-electro-mechanical loading.  
     To the best of the authors’ knowledge, no work has been reported on the 
stability analysis of piezoelectric FGM plate subjected to electro-mechanical 
loading. This paper investigates the stability analysis of FG plate integrated with 
piezoelectric actuator and sensor at top and bottom face subjected to electro-
mechanical coupling based on finite element method and considering FOST and 
HOST12, von-Karman hypothesis and degenerated shell element. Also this paper 
focuses to control the piezoelectric FGM plate against buckling by setting the 
optimum thickness of piezo layer. The present analysis is carried out on newly 
introduced metal based FGM material, which is a mixture of aluminum and 

414  Computational Methods and Experimental Measurements XVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



 
 

 

stainless steel. So this FGM exhibits the corrosion resistance and high strength 
property in single material.  

2 Finite-element formulation 

The figure 1 shows the general layout of FGM degenerated shell element 
integrated with piezoelectric actuator and sensor at top and bottom surface 
respectively. The figure 2 shows the geometry of eight noded isoparametric 
degenerated shell element [7]. For element geometry please refer to [10]. 
 

  

Figure 1: Piezoelectric FGM 
degenerated shell 
element. 

Figure 2: Geometry of an 
element. 

     The finite element formulation is based on eight noded degenerated element, 
FOST (First Order Shear Deformation Theory having five degrees of freedom 
per node) and HOST12 (Higher Order Shear Deformation Theory having twelve 
degrees of freedom per node) . The assumption made in the formulation of FOST 
(First Order Shear Deformation Theory) model is that the straight normal to the 
middle surface remain practically straight but not necessarily normal to mid 
surface during the deformation. 

2.1 Element geometry and displacement field 

In the isoparametric formulation co-ordinate of a point within the element are 
obtained as, 

 

x
3kk8 8
y

k k k k 3k
k 1 k 1 z

k mid 3k

V̂x x
ˆy N y N t V

2 ˆz z V
= =

      ζ   = +                

∑ ∑  (1) 

where, ( )j
i kV̂ i 1, 2,3= is the jth component of unit vector along nodal vector 

i kV
 at 

node k and tk is the thickness of shell at node k. k kx , y and kz are the Cartesian 
coordinates of the midpoint of the shell at kth node. The shape function Nk at kth 
node is expressed as 
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1N ( , ) (1 ) (1 ) for k 5,7
2

ξ η = −ξ +ηη =
 

(3) 

 
k k

1N ( , ) (1 ) (1 ) for k 6,8
2

ξ η = + ξξ −η =  (4) 

     The displacement components of any point in the element are expanded in 
Taylor’s series by using FOST and with the shear correction coefficient 5/6. The 
displacement component of any point within element in the global co-ordinate 
system in terms of thickness co-ordinate for FOST model [7], for HOST12 
model as follows, 

( ) ( ) ( ) ( ) ( )2 * 3 *
0 0 x 0 xu x, y, z u x, y z x, y z u x, y z x, y= + θ + + θ  (5a) 

( ) ( ) ( ) ( ) ( )2 * 3 *
0 0 y 0 yv x, y, z v x, y z x, y z v x, y z x, y= + θ + + θ   (5b) 

( ) ( ) ( ) ( ) ( )2 * 3 *
0 0 z 0 zw x, y, z w x, y z x, y z w x, y z x, y= + θ + + θ   (5c) 

     Expressing the displacement field in a compact form 

 
{ }

n
e

k 1
u [N] d

=

=∑  (6) 

in which 
n[N]=[N1, N2,..........., N ] is the shape function matrix for the 

entire element. { } { }e e e
1 nd d ,..................,d= is the element displacement 

vector. The element displacement vector for the FOST (7) and HOST12 model, 
the element displacement vector is expressed as 

 { } { }Te k k k k k k *k *k *k *k *k *k
k m m m x y z m m m x y zd u v w u v w= θ θ θ θ θ θ  (7) 

where k
mu , 

k
mv and k

mw are the displacement components of the midpoint of the 

normal in the global coordinate system. k
xθ  is a positive rotation of the normal 

about 1kV


, k
yθ  is a positive rotation about 2kV



and k
zθ  is a positive rotation of the 

normal about 3kV


. The asterisk marked terms are higher order terms. 

2.2 Strain displacement relation 

In this formulation linear and nonlinear strains are expressed by using von 
Karman assumptions, the derivatives of the u '  and v '  with respect to x ' , y '  
and z '  are small and their square terms are neglected, also neglecting the 
variation of w ' with z ' . The Green-Lagrange strains may be expressed in local 
co-ordinates as, 
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{ } { } { } { }' L ' NL ' L e1 [S][G] d
2
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




 (8) 

where { }'Lε  
and { }'NLε  are the linear and nonlinear strain vectors respectively. 

x 'x ' y 'y ' z 'z ', andε ε ε  are the normal strains; x 'y ' x 'z ' y 'z ', andγ γ γ  are the shear 

strains and  u ' , v '  and w 'are the displacement components in the local co-
ordinate system. These local derivatives are obtained from the global derivatives 
of the displacements u, v and w [7]. The displacement derivatives with respect to 
the ξ can be expressed for the FOST model [7] and for the HOST12 model as 

x x xk k
2k 1k 3k0 xn n

k y y y kk
k, 0 k, 2k 1k 3k y

k 1 k 1k kz z z
0i z2k 1k 3k

u
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∑ ∑
 

   

(9) 

The derivatives with respect to η and ζ are obtained in a similar way. 

1.1 Stress–strain relations 

The stress–strain relation in the local co-ordinate system can be written as 

 { } [ ]{ }Cσ = ε  (10) 

where, { } T

xx yy xy xz yz σ = σ σ σ σ σ 
is the stress vector { }ε  

is the strain 

vector and [C] is the elasticity matrix in global co-ordinates system. The [C] is 
obtained in global coordinates using the strain transformation matrix is given 
below [8]. The effective material properties for FGM plates by using power law 
function given as [9] 

 f m1 m1 m2 m2E E V E V= +  (11) 

 But, m1 m2V V 1+ =   and 
n

m1
2z hV

2h
+ =  

   
(12) 

 
( ) ( )

n

m2 m1 m2
2z hE z E E E , for h / 2 z h / 2

2h
+ = + − − ≤ ≤ 

 
 (13) 
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where 
m1E  and 

m2E are the elastic moduli of aluminum and stainless steel 
respectively,

m1V  and 
m2V are the volume fraction of the aluminum and stainless 

steel respectively, n is power law index, z is thickness coordinate variable. 

2.3 Electro-mechanical coupling 

The linear piezoelectric constitutive equations coupling the elastic and electric 
fields can be respectively expressed as the direct and the converse piezoelectric 
equations are given as [10],  

 
P{D} = [e]{ } + [g]{E }  ε  (14) 

 
T P{ } = [C]{ } [e] {E } σ ε −  (15) 

where{D}is the electric displacement vector, [e] is the dielectric permittivity 
matrix, [g] is the dielectric matrix, [E] is the electric field vector, [σ] is the stress 
vector and [C] is the elastic matrix for a constant electric field. 

2.4 Electrical potential function 

One electrical degree of freedom is used per node for each sensor and actuator 
layers of an element. The electric field vector is assumed to be constant over an 
element of the piezoelectric layer and to vary linearly through the thickness of 
the piezoelectric layer. The electric field strength of an element in terms of the 
electrical potential of the actuator and sensor layers is expressed as  

 
{ } ( ) ( ) [ ]{ } { }

n
p e e e
a a a aa i a i

i 1
a

0
E B B 0

1/ t=

 
 = − φ = − φ = − φ 
  

∑
 (16) 

{ } ( ) ( ) [ ]{ } { }
n

p e e e
s s s ss i s i

i 1
s

0
E B B 0

1/ t=

 
 =− φ = − φ = − φ 
  

∑
 

(17) 

where
 
ta and ts 

are the thickness of the actuator and sensor layers respectively,
{ }e

aφ and { }e
sφ are the nodal electric potential vectors for the actuator and sensor 

layers respectively and [B] is the field gradient matrix, can be given as follows 

 { } { }e T
a a1 a 2 a3 an................. ,  n= 1, 2, 3, ...., 8φ = φ φ φ φ  

(18) 

 { } { }e T
s s1 s2 s3 sn................. ,  n= 1, 2, 3, ...., 8 φ = φ φ φ φ  

(19) 

2.5 Potential energy and stability criteria 

Total potential energy is given by 

 
e e eU WΠ = −  (20) 

where eU is the potential energy due to internal work done and eW is the external 
work done by external forces. The internal potential energy eU consisting of the 
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strain energy of the entire structure and the electrical potential energy of the 
piezoelectric layers can be written as 

 
{ } { } { } { } { } { }

a s

T TT Te L p p N
a a s s 0

V V V V

1 1 1U dV E D dV E D dV dV
2 2 2

   = ε σ − − + ε σ   ∫ ∫ ∫ ∫
(21) 

where V, Va , Vs and 0σ are the volume of the entire structure, actuator layer, 
sensor layer and initial stress vector respectively. The work done by external 
forces due to the applied surface traction and applied electric charge on actuator 
is given as 

{ } ( ){ } ( )
a

Te e T T
a a

A A

W d [N] x, y dA {E } q x, y dA= σ +∫ ∫
  (22) 

where ( )x, yσ and ( )e
aq x, y are the surface traction vector and specified 

surface charge density respectively. To minimize the total potential energy, the 
first variation of eqn. (20) is set to zero, 

e e eU W 0δΠ = δ −δ =  (23) 

     Substituting eqns (10), (14) and (15) in eqn. (21) and taking its first variation. 
Also taking the first variation of eqn. (22), resulting eqns (21) and (21) put in 
eqn. (32) and condensing the electrical degrees of freedom using static 
condensation the resulting equation can be written as 

 { } { }e e e e e e
1 acK d K d F Fσ       + = +         

(24)
 

 
1 1e e e e e e e e

d da aa ad ds ss sdK K K K K K K K
− −

               = + +                  
(25) 

 { } { } { } { }e e e e e e e
d da a ds s 1K d K K F     + φ + φ =       

 (26) 

 { } { } { }e e e e e
ad aa a aK d K Q   − φ =     

(27) 

 { } { }1e e e e
da aa a acK K Q F

−
    =     

(28) 

 { } { }e e e e
sd ss sK d K 0   − φ =     

(29) 

where the superscript e refers to the parameter at the element level and [K] 
matrices with subscripts d, da, ad, aa, ds and ss are defined below 

 
[ ] [ ][ ]Te

d
V

K B C B dV  =  ∫  (30) 

 
[ ] [ ][ ]T Te e

da ad a
Va

K K B e B dV   = =    ∫  (31) 

 
[ ] [ ][ ]Te

aa a a
Va

K B g B dV  =  ∫   (32) 

  
[ ] [ ][ ]T Te e

ds sd s
Vs

K K B e B dV   = =    ∫
 

(33)
 

 
[ ] [ ][ ]Te

ss s s
Vs

K B g B dV  =  ∫  (34) 
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{ } { }

Te
1

A

F [N] (x, y) dA= σ∫
  

(35) 

 
{ } [ ]Te e

a a a
v

Q N q dA= −∫
  (36) 

     Assembling the element eqns (24), (26), (27) and (29) results in the global set 
of equations given as follows 

 [ ]{ } { } 1 acK d K d F Fσ     + = +     
 (37) 

 { } { } { } { }d da a ds s 1K d K K F     + φ + φ =       
 (38) 

 { } { } { }ad aa a aK d K Q   − φ =     
(39) 

 { } { }sd ss sK d K 0   − φ =     
 (40) 

where
 
{ }d is the global nodal generalized displacement vector, { }aφ  and { }sφ

are the global nodal generalized electric vector for the actuator and sensor layer 
respectively, eqn. (40) can be expressed as, 

 { } 1
s ss sd[K ] [K ]{d}−φ = −  

(41) 

     In case of constant gain velocity feedback control, the electrical potential to 
be fed back to the actuator { }aφ is calculated as, 

 { } *
a sG { }φ = − φ  

 (42) 

where [G*] is the feedback control gain matrix. In case of SISO (single input 
single output) system, the actuator and sensor voltage becomes a single value 
and control gain becomes a single value. The criteria for stability is obtained 
using the method of neutral equilibrium where the critical load is the load under 
which the structure can be in equilibrium both in the straight (initial) and the 
slightly bent configuration. λ[Kσ] is geometric stiffness matrix based on an 
arbitrary reference intensity of membrane stresses. λ is a scalar multiplier which 
is determined such that, both the reference configuration represented by the load 
vector{d}and slightly deformed {{d}+{δd}} remains in equilibrium 
configuration. {F1} and {Fac} are the mechanical force vectors and resulting 
force vector from applied charge on actuator layer. 

 [ ] [ ]( ){ } { }K K d Fσ+λ =   (43) 

 [ ] [ ]( ) { } { }( ) { }K K d d Fσ+λ + δ =   (44) 

     Subtracting eqn. (43) from eqn. (44) yields the Eigen value problem 

 [ ] [ ]( ) { }K K d 0σ+ λ δ =  
(45) 

where the critical buckling load is associated with the lowest magnitude eigen 
value and the displacement vector {δd} represents the buckled mode shape.   
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3 Numerical results and discussion 

Example 1: Stability analysis of FGM plate having size 1.2 m x 1.2 m and 
0.06m thickness is done. FGM plate is mixture of aluminum and stainless steel 
with piezoelectric actuator and sensor at top and bottom with thickness of 
piezoelectric actuator (ta) and sensor (ts) is 0.0025 m. Plate is simply supported at 
all edges (SSSS) and it is subjected to uniaxial compressions (figure 4). The 
elastic modulus of aluminum and stainless steel is 70 Gpa and 193 Gpa 
respectively, Poisson’s ratio is 0.3, piezostrain constants (e31, e32) is 0.046 C/m2  
and Electric permittivity (ε11) is 1.060e-10 F/m [10]. As per analytical method 
(11), critical buckling load is expressed as, 2 2

cr crN K D / b= Π in which b is the 
width of plate, D is the rigidity modulus of plate (i.e. 3 2D Eh /[12(1 )]= − υ  
with E, the Young’s modulus) and Kcr=4 for isotropic plate. Present analysis 
calculate the critical buckling load by solving eigen value problem gives Ncr=λ* 
Nx in which Nx is applied load and λ is the lowest magnitude of eigen value. 
Since there are no appropriate comparison results available for the FGM with the 
mixture of aluminum and stainless steel, so comparison of results are made with 
analytical results [11], ANSYS nonlinear analysis results for n=0 i.e. isotropic 
plate and FOST results. The results are presented for critical buckling load (Ncr) 
for various volume fraction indices thorough the thickness as 0, 3, 5, 7, 9, and 
10. As per analytical method critical buckling load is calculated as 1.05E8 N/m 
for simply supported isotropic stainless steel plate subjected to uniaxial 
compression [11], nonlinear ANSYS finite element analysis gives critical 
buckling load is 1.14E8 N/m for simply supported isotropic stainless steel plate 
subjected to uniaxial compression (figure 5). 
 

  

Figure 3: FGM plate with 
variation of 
material. 

Figure 4: Plate subjected to 
uniaxial compression. 

 
 
 
 
 

     Tables 1 and 2 show the critical buckling load of FGM plate using HOST 
model without and with piezo effect and Tables 3 and 4 show the critical 
buckling load of FGM plate using FOST model without and with piezo effect. 
The critical buckling load obtained by applying 1.2E+08 N/m axial compression 
to FGM plate without piezo effect (In case of FGM n=0 is assumed to be an 
isotropic plate) are 9.951E+07N/m and 9.824E+07 N/m for HOST and FOST 
model respectively. The HOST results are closely agreed with and FOST results 
also results are closely agreed with analytical results and ANSYS nonlinear 
program results. The buckling strength of FGM plate can be improved by using 

Nx 

Aluminum 

Stainless Steel 
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piezo layers and the improved buckling loads for HOST model is (i.e. n=0) 
1.101E+08N/m and for FOST model is 1.077E+08 N/m with gain of 5 and 3.9 
respectively.  
 

 
Figure 5: Buckling load of isotropic steel plate without piezo effect. 

Table 1:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression without piezo effect (HOST12, ta= ts=0.0025) 
x1E+07 (N/m x1E7). 

z/h Load n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 
9.951 9.951 9.951 9.951 9.951 9.951 

0 9.951 4.151 4.303 4.085 5.335 5.989 
-0.5 9.951 3.696 3.696 3.696 3.696 3.696 

Table 2:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression with piezo effect (HOST12, ta= ts=0.0025) 
(N/m x1E7). 

z/h Load Gain n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 5.0 
11.01 11.01 11.01 11.01 11.01 11.01 

0 11.01 4.804 5.061 5.304 6.077 6.282 
-0.5 11.01 4.154 4.154 4.154 4.154 4.154 

Table 3:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression without piezo effect (FOST, ta= ts=0.0025) 
(N/m x1E7). 

z/h Load n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 
9.824 9.824 9.824 9.824 9.824 9.824 

0 9.824 3.876 4.285 4.751 5.206 5.818 
-0.5 9.824 3.523 3.523 3.523 3.523 3.523 
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Table 4:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression with piezo effect (FOST, ta= ts=0.0025) (N/m 
x1E7). 

z/h Load Gain n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 3.9 
10.77 10.77 10.77 10.77 10.77 10.77 

0 10.77 4.708 5.038 5.247 5.785 6.148 
-0.5 10.77 3.999 3.999 3.999 3.999 3.999 

 
Example 2: Solving above problem for stability analysis of piezoelectric FGM 
plate by changing the thickness of piezoelectric actuator (ta) and sensor (ts) is 
0.004 m for the purpose of buckling control of thick FGM plate easily. 
     Tables 5 and 6 show the critical buckling load of FGM plate using HOST 
model without and with piezo effect and Tables 7 and 8 show the critical 
buckling load of FGM plate using FOST model without and with piezo effect. 
The critical buckling load obtained by applying 1.2E+08 N/m axial compression 
to FGM plate without piezo effect (In case of FGM n=0 is assumed to be an 
isotropic plate) are 1.011E+08 N/m and 1.004E+08 N/m for HOST and FOST 
respectively. The buckling strength of FGM plate can be improved by using 
piezo layers and improved buckling loads for HOST model is (i.e. n=0) 
1.238E+08 N/m and for FOST model is 1.152E+08 N/m with gain of 5 and 3.9 
respectively.  

Table 5:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression without piezo effect (HOST12, ta= ts=0.004) 
(N/m x1E7). 

z/h Load n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 
10.11 10.11 10.11 10.11 10.11 10.11 

0 10.11 4.411 4.549 5.307 5.859 6.174 
-0.5 10.11 3.891 3.891 3.891 3.891 3.891 

Table 6:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression with piezo effect (HOST12, ta= ts=0.004) 
(N/m x1E7). 

z/h Load Gain n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 11.0 
12.38 12.38 12.38 12.38 12.38 12.38 

0 12.38 4.795 4.946 5.691 5.938 6.442 
-0.5 12.38 4.026 4.026 4.026 4.026 4.026 

Table 7:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression without piezo effect (FOST, ta= ts=0.004) 
(N/m x1E7). 

z/h Load n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 
10.04 10.04 10.04 10.04 10.04 10.04 

0 10.04 4.151 4.341 5.042 5.54 5.943 
-0.5 10.04 3.8 3.8 3.8 3.8 3.8 
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Table 8:  Buckling load (Ncr) of simply supported Al/SUS304 plate under 
uniaxial compression with piezo effect (FOST, ta= ts=0.004) (N/m 
x1E7). 

z/h Load Gain n=0 n=3 n=5 n=7 n=9 n=10 
0.5 

12 4.0 
11.52 11.52 11.52 11.52 11.52 11.52 

0 11.52 4.66 4.782 5.142 5.713 6.062 
-0.5 11.52 3.778 3.778 3.778 3.778 3.778 

 
     The overall result shows that the buckling of plate can be controlled by using 
piezoelectric layer and present analysis gives good agreement of controlled 
buckling load of FGM plate with piezo thickness of 0.004m as compared with 
results of plate with piezo thickness of 0.0025m. Overall result shows that 
buckling strength of plate goes on increasing with increase in volume fraction 
indices through the thickness. Also the strength of plate increases from bottom to 
top of FGM plate i.e. from aluminum to steel. The HOST results are closely 
agreed with and FOST results also results are closely agreed with analytical 
results and ANSYS nonlinear program results. 

4 Conclusion 

The finite element model for stability analysis of piezo laminated FGM plate 
using HOST12 and FOST is developed. One electrical degree of freedom per 
element is used in the formulation. The equation for static analysis is derived 
using the minimum energy principle. The validation for the stability analysis is 
performed by comparing the buckling load results of FGM plate without and 
with piezo-electric effect using the analytical results, ANSYS nonlinear finite 
element analysis results of isotropic stainless steel plate (n=0) and FOST model 
results for FGM plate with different piezo layer thickness. 
     Numerical studies on piezoelectric thick FGM plate for stability analysis 
using SISO control strategy suggested that buckling of FGM plate can be 
controlled by increasing the gain values. The buckling analysis is performed for 
different values of gains for different loading conditions as well as piezo 
thickness. Present analysis predicts that buckling strength of plate can be 
improved by using higher piezo layer thickness easily as compare to the lower 
piezo thickness. Overall results show that, buckling strength of plate increases 
with the increase in volume fraction indices through the thickness. Also the piezo 
thickness significantly influences the buckling control of plate with different 
gain values. The difference between HOST12 and FOST mode results are less 
and closely agree with the results of ANSYS nonlinear finite element analysis of 
isotropic stainless steel plate. 
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