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Abstract 

Finite Element Models (FEM) are widely used in order to study and predict the 
dynamic properties of structures. Comparing dynamic experimental data and 
analytical results, respectively, of the real and modelled structure, shows that the 
prediction of the dynamic response can be obtained with much more accuracy in 
the case of a single component than in the case of assemblies. 
     Generally speaking, as the number of components in the assembly increases 
the calculation quality declines because the connection mechanisms among 
components are not represented sufficiently. 
     Specifically for aircrafts, it is quite common that Frequency Response 
Functions (FRF) obtained via Ground Vibration Test (GVT) show a certain 
degree of discrepancy from the FRF calculated with the FEM, particularly across 
the sections where joining is discontinued.  
     When this happens it is necessary to tune up the values of the dynamic 
parameters of the joints, to allow the numerical FRF to match the results of the 
experimental FRF. From a modelling and computational point of view, these 
types of joints can be seen as localized sources of stiffness and damping and can 
be modelled as lumped spring/damper elements. 
     In this paper this is done by formulating an optimization problem. The 
approach has been applied to a FEM that mimics the rear fuselage of a 
commercial aircraft and the numerical results shows that the procedure is very 
efficient and promising.  
Keywords: aircraft design, assembled structures, ground vibration test, dynamic 
analysis, optimization methods. 
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1 Introduction 

Modern aircrafts are usually built by connecting a number of structural 
segments, as fuselage sections, belly fairing, wings, vertical and horizontal 
stabilizers and so on. Connections between these structures can be of different 
nature and exhibit dissimilar behaviour. While some of them are fabricated as 
built-in there are other cases where both parts of the assembly are only connected 
at a few locations. Figure 1 shows examples of each connection type.  
 

  
                                    (a)                                                            (b) 

Figure 1: Examples of assembled structures. (a) Fuselage barrel; (b) VTP 
and fuselage connection. 

     A relevant issue of locally connected assembled structure is the evaluation of 
the mechanical properties of the assembly elements, namely the values of the 
stiffness, for static purpose and the damping, for dynamic purposes. Proper 
identification of both characteristics is very important in order to have good 
enough information or the aircraft expected performance. Also they are 
necessary for the definition of a finite element model that can be used to carry 
out structural analysis of several classes of loadings. 

2 Ground vibration test of aircraft 

Aircrafts are subjected to an ample collection of test to assess their behaviour. 
Amongst them the one entitled Ground Vibration Test (GVT) is in charge of 
characterizing the structure dynamically. It means to define the properties of the 
structure in terms of FRFs, modal base, modal shape and modal damping in the 
frequency range of interest. The GVT is carried out by applying a set of dynamic 
loads at specific locations of the aircraft, and installing a number of measurement 
devices as accelerometers at relevant positions, to obtain information of 
structural responses from the aircraft. The first are defined as Dynamic Points 
(DPs) and the latter as Response Points (RPs). Typical output of GVT are the 
FRFs, whose synthesis, through Experimental Modal Analysis (EMA) technique, 
allows the definition of modal base, or eigenvalues, and the modal shape, or 
eigenvector, associate to each mode.  
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     In figure 2 a CESSNA business jet and a military aircraft are shown, as 
examples of aircraft subject to GVT.  
     An important role of the GVT, in addition to provide actual dynamic 
performance of this full aircraft or the aircraft part, is the possibility to use the 
experimental data provided by the test to make comparisons with dynamic 
analysis outputs of the numerical models. It is not rare that in many cases these 
two types of results do not agree to the expected level, particularly for higher 
frequency values, where the joining mechanisms became relevant. For long time 
the lack of reliability in modeling the junctions in complex assemblies has been 
under estimated, hence its effect on the global dynamic behavior is neglected.  
 

 
                          (a)                                                             (b) 

Figure 2: Aircrafts subject to GVT. (a) CESSNA business jet; (b) military 
aircraft. 

     Minimize the degree of discrepancy between EMA and FE Model is very 
important, because allows the numerical model to be predictive and consequently 
reliable at time to calculate dynamic response under whatever load condition: i.e. 
continue and discrete turbulence, wind-milling, dynamic landing. If statically 
only the stiffness can be considered a key parameter, dynamically speaking, 
more complex and dissipative mechanisms, like friction at interfaces, play 
crucial roles. It means that the tuning approach needs to consider both stiffness 
and damping. Also it is important to point up that these kind of dissipative 
mechanisms are usually non-linear. 
     Several models have been proposed to tackle up with this problem. Hurty [1], 
proposed the Component Mode System (CMS), many years ago. More recently 
the Harmonic Balance Method has been used for different purposes [2–7]. A 
research conducted in the University of Coruna in collaboration with AIRBUS 
has taken a different approach providing good results and will be next described. 
The procedure explained in the next paragraphs is applied considering a linear 
formulation of the lumped elements at interfaces but it can be extended, by 
means of iterative procedures, to non linear lumped elements. 

3 Formulation of dynamic analysis of assembled structures 

As mentioned before the research deals with the identification of the dynamic 
parameters of the joints of assembled structures, but the approach is a novel one. 
It is based upon splitting the stiffness of the complete structure into two parts kns 
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and ks, where ks is the stiffness provided by the joints and kns the remaining 
stiffness. Thus the total stiffness k is 
 ns s k k k   (1) 
therefore the dynamic equilibrium under a vector of forces f can be written 

  n s s       m u c u k u f m u c u k k u f   

 
(2) 

     The displacement vector u is formulated via modal decomposition using the 
spectral matrix . 

 u Φq  (3) 
vectors f and q can be written as 

 
i t i te e  f p q v  (4) 

     Introducing these expressions into (2) and if the spectral matrix contains the 
eigenvectors associated to the stiffness Kns normalized to the total mass it turns 
out. 

 n s s    I q c q k q k q F 

 (5) 
where 

 
T Tc C Φ Φ F Φ p  (6) 

and 

 
T T

ns ns ns ns s ns s ns K Φ k Φ K Φ k Φ  (7) 
vectors p, F and v are complex in general, so 

 r i r i r ii i i     p p p F F F v v v  (8) 
therefore 

 
ns s r r

ns s i i



  

  

R K C v F
C R K v F

 (9) 

where 

 
2

ns ns  R K I  (10) 
     Solving the system of linear equations of (9) the vector of displacements u 
can be obtained for each type of dynamic load. 
     These expressions can be simplified if the load vector p is real. In other words  

 T; ;r i r i   p p p 0 F Φ p F 0  (11) 
then it turns out 

   ; cos cosi t
r i r i r ii e t sen t i sen t t            u Φq Φ v v u Φ v v v v   (12) 

     If the load is p = Pcost 

    2cos sen cos senr i r it t t t        u Φ v v u Φ v v  
(13.a) 

and if the load is p = Psent 

    2sen cos sen cosr i r it t t t        u Φ v v u Φ v v  
(13.b) 

     Let consider the load is p = Psent. A component of vector u, for instance uk, 
is obtained as 

  cosψ v vk k r iu sen t t    (14) 

where ψ k is the k-esime row of matrix Φ . Parameters of interest of uk are its 
amplitude and phase angle. It can be remembered that in a one degree of freedom 

356  Computational Methods and Experimental Measurements XVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



dynamic system under a harmonic load p = Psenωt the displacement can be 
written as  

 0 ( )u u sen tω ϕ= −  (15) 
comparing expressions (14) and (15) is easily obtained that the phase angle ϕ  is  

 
k i

k r

arctgϕ = −
ψ v
ψ v

 (16) 

     The maximum value of uk is obtained by differentiating expression (14) and it 
turns out  

 
[ ]cosk

k r i
du t sen t
dt

ω ω ω= −ψ v v  (17) 

when the derivative cancels out the instant linked to the maximum value of uk is 
identified. That time is the data required to create the FRF of the dynamic system 

 
1 k r

k i

t arctg
ω

=
ψ v
ψ v

 (18) 

When the load is of the type p = Pcosωt the maximum value of uk is obtained by 
differentiating expression (13.a) and finally it turns out  

 
1 k i

k r

t arctg
ω

= −
ψ v
ψ v

 (19) 

     This formulation allows us to obtain the displacements, accelerations or 
velocities of a structure from expression (12) or its simplified version (13) 
or (21). It has the advantage that it only requires to know the spectral matrix Φns 
and the natural vibration frequencies of the structural model excluded the spring 
elements. That needs to be done only once. 
     Therefore the evaluation of a FRF in the dynamic system for different values 
of the spring parameters can be done quite easily carrying out the following 
steps: 
1) Assembly of stiffness matrix of springs ks that is a simply task. 
2) Calculation of matrix Ks according to formulae (7) 
4) Calculation of matrix R according to expression (10). 
     Afterwards the system of linear equations of (9) can be solved and the FRF 
obtained for any given value of spring stiffness ks.  
     The main idea behind this formulation is to eliminate the inconvenience of 
carrying out a dynamic analysis of the full structure each time that the 
mechanical parameters of the points are changed with the objective of matching 
the experimental and computational results. 
     In this approach an eigenvalue problem is solved at the beginning considering 
the structural model after eliminating the contribution of the joints, that in this 
research have been considered as linear springs. This provides spectral matrix Φ 
and matrices Kns and C that are diagonals. 

 

2
1 1 1

2

2

2
ns

m m m

ω ζ ω

ω ζ ω

   
   

= =   
   
   

K C
 

     

 

 (20) 
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     Afterwards for any given realization of the set of mechanical parameters of 
the joints the procedure only requires to solve systems of linear equations to 
obtain the FRF of a specific degree of freedom. 

4 Identification of mechanical parameters by optimization 
methods 

The aim of obtaining a FEM model that can produce FRF that mach those 
provided by the GVT is done by identifying the values of the mechanical 
parameters of the degrees of freedom related to the joints of the assembled 
structure. In this research the mechanical parameters allowed to vary have been 
the spring stiffness and the set of modal damping coefficients. By doing that and 
using them as design variables an optimization problem can be formulated using 
as objective function the summation of the squares of the differences between the 
values of the natural frequencies in the experimental and the numerical models 
and also the squares of the differences between the values of the FRF at the 
natural frequencies. Figure 3 shows graphically the strategy and mathematically 
the objective function can be written as 

 
( ) ( ) ( )( )

2 2

1 1

n n

iEX iNU EX iEX NU iEX
i i

F FRF FRFω ω ω ω
= =

= − + −∑ ∑  (21) 
 

where ωiEX is the i-esime natural frequency and FRFEX (ωiEX) its amplitude in the 
experimental model. All these values are constant in the optimization process. 
Also ωiNU is the i-esime natural frequency and FRFNU (ωiNU) its amplitude in the 
FRF of the numerical model. These values change at each iteration of 
the procedure. In fact, the first set of natural frequencies is obtained by solving 
the eigenvalue problem using Kns matrix. Such values can be entitled ωiNUI. 
Them at each iteration a natural frequency is identified as the coordinate that 
provide a local maximum of the frequency response function. This is done 
searching in an interval located between values ( ),iNUI iEXω ω ω ω−∆ + ∆ as shown 
in figure 3. 
 

 

Figure 3: Explanation of optimization procedure. 

     Expression (21) is intended to match the results at a single degree of freedom 
of an assembled structure but it could be more convenient to match as many 

358  Computational Methods and Experimental Measurements XVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



degrees of freedom as possible in order enhance the accuracy of the FEM model. 
In that case the objective of the optimization problem becomes. 

 
( ) ( ) ( )( )

2 2

1 1 1

w wFRF N NN

iEX iNU EX iEX NU iEX
j i i

F FRF FRFω ω ω ω
= = =

 
= − + −  

 
∑ ∑ ∑  (22) 

where NFRF is the number of degrees of freedom considered in the study. 

5 Application example 

The described methodology has been applied to the structural model defined in 
figure 4 having a shape similar to the connection between the fuselage and the 
tail cone of a commercial aircraft. Cylinder and cone are connected at the 
locations shown in figure 4.b. Joints are defined as linear springs, up to a number 
of nine elements. The structure is undergoing a vertical harmonic load on node 
5432 that is the tip upper node of the cone. 
 

 
(a) 

 
(b) 

Figure 4: Structural model of application example. (a) Model geometry; 
(b) joints location. 

     A dynamic analysis using ABAQUS code has been made to obtain the FRF 
response of several degrees of freedom and the FRF provided by this analysis 
will be the objective of the optimization. Afterwards some properties of the FEM 
will be changed and thus the new FRF will be different and they will be 
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nominated as initial. Then, the procedure already described will proceed 
iteratively until achieving the optimum values of the design variables that will 
match the objective FRF. 

5.1 Optimization formulation with a simple FRF 

In this case the purpose has been to match the FRF of the vertical displacement 
of code 5432, where the harmonic load is applied. Objective and initial values of 
the spring’s stiffness and the modal damping coefficients, that are the design 
variables, appear in tables 1 and 2. It can be seen in figure 5 that such 
modification alters substantially the dynamic response of the first and second 
natural frequencies.  

Table 1:  Values of spring stiffness. 

 1 2 3 4 5 6 7 8 9 
Objective 5000 5000 5000 5000 5000 5000 5000 5000 5000 

Initial 4500 4500 4500 4500 4500 4500 4500 4500 4500 

Table 2:  Values of modal damping coefficients (%). 

 1 2 3 4 5 6 
Objective 2 2 2 2 2 2 

Initial 3 3 3 3 3 3 
 

 

Figure 5: FRF of initial and objective models. 

     Carrying out the optimization procedure and using the objective function of 
expression 21 the initial FRF can be matched as presented in figure 6. 
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Figure 6: FRF of objective and optimized models. 

5.2 Optimization formulation with multiple FRF 

Additionally another case has been solved considering simultaneously the 
following FRF: 
- Vertical displacement of node 5432 
- Vertical displacement of node 3443 (bottom spring) 
- Vertical displacement of node 3418 (intermediate left spring) 
- Vertical displacement of node 3455 (bottom right spring) 
     Design variables chosen were the stiffness of the nine springs and the modal 
damping coefficients of six natural frequencies. In figure 7 the FRF of objective 
and initial design are shown and the dissimilarities are obvious. On the other 
hand figure 8 presents the FRF of the objective and optimized models that are in 
very good agreement. 
 

 
(a) Vertical displacement of node 5432 

 

Figure 7: FRF of objective and initial models. 

 

Computational Methods and Experimental Measurements XVI  361

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



 
(b) Vertical displacement of node 3443 

 
(c) Vertical displacement of node 3418 

 
(d) Vertical displacement of node 3455 

Figure 7: Continued. 
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(a) Vertical displacement of node 5432 

 
(b) Vertical displacement of node 3443 

 
(c) Vertical displacement of node 3418 

 
 

Figure 8: FRF of objective and optimized models. 
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(d) Vertical displacement of node 3455 

Figure 8: Continued. 

6 Conclusions 

The following conclusions can be extracted from the research: 
 

1) Reliable prediction and the studies of the dynamic behavior of 
assembled structures , as aircrafts, though numerical methods, is a 
general issue because localized phenomena, involving complex stiffness 
and damping mechanisms, happen at joint interfaces. 

2) A way to increase the accuracy of the FE Models is to set up a robust 
tuning process able to minimize the error between the experimental and 
analytical results.  

3) Optimization process can be successfully used in order to minimize the 
degree of discrepancy between these set of data. 

4) The optimization process previously described focuses the attention on 
the use of spring lumped elements at interfaces as local variable and 
modal damping as global variable, but the methodology is completely 
general and can be easily adapted at whatever type of element. Also it 
can be used in order to estimate the dynamic behavior when non-linear 
lumped elements at interfaces are involved. This approach evidently 
requires an iterative algorithm for the convergence of the solution.  
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