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Abstract 

The well-known Magnus effect is the phenomenon responsible for the curved 
streamlines around rotating cylinders or balls. In other words, the phenomenon 
causes the curved motion of spinning balls and missiles. A related application is 
the Flettner rotor ship, which was designed to use the Magnus effect for 
propulsion. More generally, the Kutta-Joukowski theorem determines lift as the 
product of upstream velocity, fluid density, and circulation. Flow visualization 
experiments of cylinders in a cross flow demonstrate this effect. For comparison 
purposes, a classical potential solution is presented with the same parameters 
(with the Reynolds number of 920). The present study assumes that similar 
effects can be created by means of a non-symmetrical heat/mass transfer from a 
section of the bluff body. A theoretical model was derived, based on equations of 
momentum, mass, and energy balance. The derivation utilized the terms of the 
entropy gradient, and the resulting velocity circulation around the body. A 
circular cylinder with a mass transfer surface was suggested. The mass transfer, 
namely the evaporation of water, is proposed through a selected 90° segment of 
the cylinder surface. 
Keywords: cylinder in cross flow, Magnus effect, active flow control. 

1 Introduction 

The phenomena arising from the flow past a rotating body, such as the diversion 
of flying bullets or golf balls from their direct path, has been observed for several 
centuries.  
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     The first experiments were performed in the middle of 19th Century by 
Heinrich Gustav Magnus, who confirmed the existence of additional forces in 
the flow past rotating bodies. The studied phenomenon was later named after 
him. The flow around a rotating cylinder was also investigated by Ludwig 
Prandtl in the first half of the 20th Century. For more details, see Zdravkovich 
[1].  
     This work focuses on the ability to generate circulation – and thus lift – by 
mass transfer, particularly via the evaporation of water from a segment of a 
cylinder. It is difficult to perform experiments in which the evaporation from the 
cylinder surface is well controlled. That is why this paper uses theoretical 
background and reference experiments of visualization of flow past rotating 
cylinders. To complement the context, the experiments are compared with a 
known mathematical model of potential flow. 

2 Overview of the experiments 

This paper presents the results of eight experiments conducted with two 
cylinders of different diameters, D. An overview of the experiments is presented 
in Table 1, where n is the rotation speed of the cylinder, f is the wake frequency 
measured by the stroboscope (no. 5, see part 4.1 below) or estimated (no. 1) from 
Eq. (15), v∞ is the oncoming flow velocity, Re is the Reynolds number Re = v∞ 
D/ν, St is the Strouhal number St = fD/v∞, Γ  is the circulation Γ = n π2 D2, Fv is 
the lift force form the Kutta-Joukowsky theorem (see Eq. (13) in the text below), 
and ν is the kinematic viscosity. Experiments 2 through 4 were performed with 
the cylinder rotating in a clockwise direction. 

Table 1:  Overview of the experiments. 

no. D     n    f    v∞  Re St Γ           Fv 
              mm   Hz  Hz   m/s     m2/s           N 
1 25.0      0  4.77 0.563 920 0.2118 0                        0 
2 25.0   5.0       - 0.563 920             - 0.0308 0.00057 
3 25.0 12.5       - 0.563 920             - 0.0771 0.00144 
4 25.0 20.0       - 0.563 920             - 0.1234 0.00230 
5  3.0      0 31.8 0.563 110 0.1694 0 0 

3 Potential flow model 

The presented results show the solution of a two-dimensional flow of an ideally 
incompressible fluid without internal friction, i.e. zero viscosity is assumed. The 
importance of the model of potential flow in fluid mechanics comes from 
historical context (much older than practical using of computers) and from 
a visual interpretation of the influence of individual parameters on the results.  
     The potential flow velocity is defined by the potential function Φ or by the 
stream function Ψ. Both of these functions can be expressed as a function of a 

150  Computational Methods and Experimental Measurements XVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



single complex variable F(z) = F(x + iy) in the case of planar flow. Function F(z) 
is called the complex potential. The complex potential can be expressed as: 

 F(z) = Φ(x, y) + iΨ(x, y) (1) 

     It is possible to derive the complex potential of a flow past a rotating cylinder 
as a superposition of free stream flow, dipole, and potential vortex. 

Free stream flow: The complex potential function for free stream can be 
described as: 

 F(z) = v∞z. (2)  

Line source or sink: The complex potential function for a source or sink is: 
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where Q is the flow rate (positive or outwards for a source, negative or inwards 
for a sink) and r0 is the radius corresponding to the line with zero potential 
velocity.  
Dipole is created by the superposition of a source and a sink of equal intensity 
placed symmetrically with respect to the origin. The complex potential of the 
dipole is: 
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where M = 2Qx0 is the momentum of duplet and 2x0 is the distance between the 
source and sink. 
Free vortex has a complex potential of: 
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where r0 corresponds to the radius of the circle, the stream friction equals zero, 
and Γ is circulation defined as: 

 ( )∫ ===Γ nrrvdsv tt
222 ππ . (6) 

Quantity vt is the velocity of the particle in a potential vortex. This velocity is 
tangential to the circle with radius r. The center of the circle is in the center of 
the vortex.  
Rotating cylinder: Superposition of the free stream (2), dipole (4), and free 
vortex (5) leads to the formulation of a complex potential function for a rotating 
cylinder in which the center is situated at the center of a coordinates system. The 
complex potential is written as: 

 
0

ln
2

1
2

)(
r
zi

z
MzvzF

ππ
Γ

++= ∞
. (7) 

 

Computational Methods and Experimental Measurements XVI  151

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



     This expression can be modified as: 
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     Substituting z = x + iy and separating the real and imaginary parts of Eq. (8), 
the potential function Φ and stream functionΨ are derived as: 
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Variable r0 indicates (as in the case of a potential vortex) the radius of the circle 
that represents part of the line of zero stream function. This value indicates the 
radius of the cylinder. 
     Circulation affects the position of the leading and trailing point on the 
cylinder, i.e. the position of the points where the tangential velocity is zero. 
Tangential velocity is obtained as the negative value of the derivative of stream 
function by the radial coordinate r. The position of the leading and trailing points 
comes from the coordinates vt (r0) = 0. These points are symmetric along a 
vertical axis of the cylinder, and their vertical coordinate yn is: 
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     Equations (9) and (10) represent the functions for flow field past a stationary 
cylinder when the circulation is  Γ = 0. Leading and trailing points are located on 
the x axis. A marginal case occurs when Γ = 4πr0v∞. In this case, leading and 
trailing points merge into one stagnation point on the surface. This stagnation 
point lies on the vertical axis. For higher values of circulation, the stagnation 
point separates from the cylinder surface and moves in the y direction. The 
distance of the point on the vertical axis from the origin of the coordinate system 
is: 
 2

0

2

44
r

vv
yN −







 Γ
+

Γ
=

∞∞ ππ
.  (12) 

     Lift force perpendicular to the free stream occurs in the case of a flow past a 
rotating cylinder. The magnitude of this force is represented by the well-known 
Kutta-Joukowsky theorem (e.g. [1]) as: 
 Γ= ∞lvFv ρ , (13) 

where l is the cylinder length. 
     Figure 1 shows the contours of the stream function Ψ (according to Eq. (10) 
for experiments 1 to 4 in Table 1). The cylinder was placed into the origin of the 
coordinate system. The oncoming flow of velocity v∞ flows from left to right 
along the x axis. The same part of the flow field (the square of the dimensions: 
(-0.1, 0.1) x (-0.1, 0.1) m) is shown in all pictures. 
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Figure 1: (a, b); for legend see next 
page.   

Figure 2: (a, b); for legend see next 
page. 

     The cylinder rotates in a clockwise direction. The finer step between contours, 
∆Ψ = 0.001, is set in proximity of the cylinder. Step ∆Ψ = 0.01 is set for 
Ψ > 0.01 and Ψ < -0.01 respectively. The figures confirm previous conclusions. 
Stagnation points lie on the horizontal axis of a stationary cylinder – see 
Fig. 1(a). For a rotating cylinder, both points move downwards – see Fig. 1(b, c). 
The critical speed and the critical circulation, related to the only one stagnation 
point on the cylinder, are ncrit = 2v∞/πD and Γcrit = 2πDv∞ respectively. Namely, 
for the present case: ncrit = 14.3 s-1 and Γcrit = 0.0884 m2/s. 
     Finally, in cases when the rotating speed is greater than the critical speed, the 
stagnation point separates from the cylinder surface and shifts downwards along 
the vertical axis – see Fig. 1(d).  

4 Visualization of flow field 

Visualization was performed in a small wind tunnel measuring 340 x 460 x 29 
mm (length x height x depth). The cylinder for the visualization experiments had 
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a diameter of D = 25 mm and a length of l = 28 mm. Rotation was provided by a 
stepper motor with gearbox.  
     Water mist was used for visualization. The mist was created using a Mini 
Nebler ultrasonic fog generator and fed into the wind tunnel with a vertically 
perforated tube. The length of the tube corresponded to height of the workspace 
in the tunnel. The workspace of the tunnel was continuously illuminated. Flow 
patterns in the tunnel were photographed by a Canon PowerShot G7 camera, 
which was located at a distance of 0.7 meters from the front wall of the tunnel. 
Exposure time was 1 s, allowing the photographs to show the streaklines of the 
flow. 
     Because flow velocity was relatively small (v=0.563 m/s, see the part 4.1 
below), water drops descending from the mist due to gravity were observed to 
have a slight slope in their trajectory. The slope was approximately 3° in all of 
the experiments. The pictures presented in this paper are therefore rotated anti-
clockwise to eliminate this angle. 
 

 

Figure 3: Potential theory contours 
of the stream function Ψ, 
(a) n=0, (b) n=5 s-1, (c) 
n=12.5 s-1, (d) n=20 s-1. 

Figure 4: Flow visualization for the 
same rotation speed n as 
in Fig. 1. Exp. parameters  
– see no. 1–4 in Table 1. 
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     Figure 2 shows a visualization of experiments 1 to 4 according to Table 1. 
The cylinder was rotated in a clockwise direction. Experiments with a stationary 
cylinder are shown in Fig. 2(a). Vortex shedding is roughly symmetrical along 
the horizontal axis of the cylinder. Figure 2(b–d) shows flow patterns in cases 
using a rotating cylinder. The deflection of the flow due to the rotation of the 
cylinder, as well as the shift of the separation point with an increase in the speed 
of rotation, is evident.  
     Comparison of the results from visualization experiments with the potential 
theory (Fig. 1) shows that the potential flow due to its simplistic assumptions 
(incompressible fluid without internal friction) gives only an approximate idea of 
the flow field past stationary and rotating cylinders. It can be seen that the 
viscosity and related phenomena, such as the existence of laminar or turbulent 
flow, plays an important role in flow past a body. 
     Note, that this work is primarily focused on the study of time-averaged flow 
fields. The vortex shedding frequency in the wake of the rotating cylinders was 
not dealt with in this study. Therefore, the corresponding parameters are not 
provided in Table 1. 

4.1 Evaluation of flow velocity of oncoming flow from shedding frequency  

Velocity of the oncoming flow was evaluated by experiment no. 5 (Table 1). A 
stroboscope (Cole Palmer 87002) was used to illuminate the working space of 
the wind tunnel during the experiment. The strobe frequency was synchronized 
with the shedding frequency of vortices in the cylinder wake. Figure 3 shows the 
results of visualization. It must be mentioned that this picture shows a 
multiexposition of 31 images captured with at stroboscope frequency of 31.8 Hz. 
Therefore, Fig. 3 confirms the excellent periodicity of the phenomenon.  
     The Williamson and Brown [2] formula: 

 1 2 /St C C Re= − ,  (14) 

can be used to evaluate the velocity of oncoming flow from the observed 
shedding frequency, where C1 and C2 are constants with values C1 = 0,2665 and 
C2 = 1,0175 for Re = (49÷180), and C1 = 0,2234, C2 = 0,3490 for Re = 
(230÷1200). 
     Only slightly different values of C1 and C2 in Eq. (14) can be found in the 
work of other authors, e.g. Fey  et al. [3] or Wang  et al. [4]. 
 

 

Figure 5: Flow visualization of the von Kármán vortex street at Re = 110, 
multiexposition of 31 images, at f = 31.8 Hz (experiment no. 5, 
Table 1). 
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     Substituting St and Re to Eq. (14) the formula for the oncoming velocity of v∞ 
is: 

 ( )2
21 4

4
b b cv∞

= − + − , (15)  

where 2

1

C
C db ν

=  and 
1

fd
Cc = − . 

     The shedding frequency was measurement by the stroboscope and the result 
was f = 31.8 Hz. Then the oncoming velocity and the Reynolds number were 
evaluated as v∞ = 0.563 m/s and Re = 110, respectively.  

5 Relation between force interaction and heat transfer  

Equations of conservation of mass, momentum, and total energy in classical fluid 
mechanics are usually formulated as the balance laws of the corresponding 
quantities. The second law of thermodynamics is understood as the balance of 
entropy. A completely different physical interpretation of the balance of 
momentum follows from the modified Lagrange principle of classical mechanics 
with application to fluids. The relevant correlation between the classical 
mechanics of material points and classical continuum mechanics can be 
established when the existence of a trajectory and a friction force are added. The 
relation between friction force and the rotational part of a velocity field derived 
from the Lagrange principle allows the balance of momentum for a stationary 
flow to be formulated as follows 

 rot grad grad grad ch T s× = − − φv v  (16) 

where the total enthalpy ch  is defined as the sum of kinetic energy 2 / 2v , 

internal energy u, pressure energy /p ρ , and the potential energy of the external 
volume forces φ  

 
2
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ph u= + + + φ
ρ
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     The total enthalpy for the stationary case is constant. Under the same 
conditions, the balance of momentum in classical fluid mechanics is formulated 
as: 

 
dis

1rot grad grad div ch T s× = − −
ρ

v v t  (18) 

which is the so-called Crocco theorem. The dissipative part of the Cauchy stress 
tensor for Navier-Stokes fluid is:  

 ( ) ( )T
dis

2( , ) grad grad div 
3

T  = µ ρ + − 
 

t v v v I  (19) 
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where the viscosity ( , )Tµ ρ  is crucial fluid quality, which generates the force 
interaction between the fluid and a solid wall. Solely due to viscosity, the 
velocity gradient on the wall of the rotational cylinder can only be generated in 
the boundary layer, see Fig. 4,  

 
( ),
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r R R
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r r
ϕ ϕ
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and, consequently, the rotational part of the velocity field is: 
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     According to Eq. (18), the volume force on the fluid in the boundary layer has 
a radial direction only:  

 ( )
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v v
rot v
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r R R r R R
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Figure 6: The circulation Γ generated by the velocity field with the rot v ≠ 0 
induces the lift Fy. 

     The circulation Γ , which is generated inside the boundary layer by the 
rot 0≠v part, can be alternatively generated by a change in entropy as follows 
from Eqs. (16) and (18): 

 ( )
( ),

v
rot v grad evap

rr
r R R

h
T s

r
ϕ

ϕ
∈ +δ

∂ 
× =  ∂ δ 
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 (23) 

where hevap [J/kg] is the specific evaporation heat, which is negative.  
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With respect to the estimation of ( )rot
z

v  in Eq. (21), together with Eq. (23), the 
circulation can be approximately evaluated as follows: 

 v
ds rot d d

v
evap

A A

h A
r
ϕ

ϕ

∂
Γ = =

∂ δ∫ ∫ ∫v v a a 





  (24) 

     The cross-section of the evaporation layer is A R= ψ δ . For / 2ψ = π , the 
tangential velocity is ( )v 1.41,2 vϕ ∞∈ . It can be estimated using a coefficient of 

( )1.41,2a ∈ , so that v vaϕ ∞= . 
     Circulation around the cylinder can be generated by cylinder rotation as well. 
Applying Eq. (24) gives:  

 ( )22
v

evapRh
R n

a ∞

ψ
Γ = π =  (25) 

and the corresponding number of rotations can be estimated as: 

 ( )
-1

2 s
2 v

evaph
n

aR ∞

ψ
 =  π

 (26) 

 
     The specific evaporation heat of water at 18°C is lv 2458 kJ/kgh = . The 

evaporation heat needed to generate circulation is v lvevaph c h= ∆  and is induced 

by a change in air humidity vc∆ , where ( )v v a v/c = ρ ρ + ρ  is the mass 
concentration of the water vapor in the air.  

6 Conclusion 

This work deals with the flow fields around stationary and rotating cylinders at 
Re = 920. Visualization was performed using a water mist in a small wind 
tunnel. The visualization of the von Kármán vortex street in the wake of cylinder 
at Re = 110 is also presented. A measured shedding frequency was used to 
evaluate velocity of oncoming flow in the wind tunnel. 
     A mathematical model of the flow field based on analysis of potential flow is 
also presented in this paper. It has been shown that viscosity has a significant 
influence on the character of the flow, and the potential flow model can not fully 
describe real flows. 
     Finally, a theoretical model was derived, focusing on generation by means of 
non-symmetrical mass transfer (water evaporation) from a part of the bluff body. 
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