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Abstract 

We numerically simulate the previous instability experiments of a double mode 
perturbed interface in the initial nonuniform flows in an unreshocked case, the 
numerical results are in very good agreement with the experiment, meanwhile 
investigate the effect of the nonuniformity of flows on the evolution of instability 
in nonlinear regime after reshock, by adopting two different nonuniform 
coefficients (δ1=0.6162, and δ2=0.4961) in the Gaussian distribution of the 
initial nonuniform density. The results indicate that the nonuniformity of 
the initial flow has great effect on the evolution of instability in the linear and 
weak nonlinear regime prior to reshock. 
Keywords: nonuniform flows, Richtmyer-Meshkov instability, mixing, reshock. 

1 Introduction 

The Richtmyer-Meshkov instability occurring at the corrugated interface 
between two fluids of different densities is of contemporary interest in many 
fields of research, among which are the inertial confinement fusion (ICF) [1], the 
fuel mixing in a Scramjet [2] and the explosion of supernova [3]. When an 
incident shock proceeds into a perturbed interface, vorticity is deposited by the 
baroclinic torque vorticity production term 2pρ ρ∇ ×∇ . 
     Following the first interaction between the corrugated interface and the shock, 
a transmitted shock proceeds into the second heavy fluid, and reflects from the 
end wall of the shock tube, then encounters the evolving layer again. After the 
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process called reshock, a reflected rarefaction wave returns into the second fluid 
and will again interacts with the evolving layer when reflecting from the 
endwall, producing a compression wave. The compressibility and nonlinearity 
effects in wave-interface interactions significantly affect the growth rate, making 
the analytical studies of the growth rate harder. 
     Numerous investigations focusing on the growth rate after reshocks have been 
presented. Richtmyer [4] originally confirmed that the growth rate of the initial 
small perturbation amplitude in single-mode RMI is linearized with time in 
1960. Mikaelian [5] explored the growth rate of the interface by applying the 
potential flow model to growing perturbation to combine the initial and 
asymptotic stages. Zhang and Sohn [6] presented a derivation of nonlinear theory 
of Richtmyer-Meshkov instability using Padé approximation from early to later 
times. Recently, a number of studies investigate the effects of initial conditions 
on growth rate. Thornber et al. [7] showed that the effects of initial conditions 
will diminish after a few reshocks because of the change of the form of the 
perturbation power spectrum. Schilling et al. [8] used the ninth-order WENO 
shock-capturing method to investigate the late-time mechanism of reshock and 
mixing, firstly describing the reshock process, and confirmed that the reflected 
rarefaction has an important role in breaking symmetry and approaching late-
time statistical isotropy of the velocity field. Besides, Hill et al. [9] indicated that 
the reflected rarefaction drives the growth rate of the mixing layer more 
significantly than the reshock by examining the turbulent kinetic energy. Ukai et 
al. [10] investigated the effect of the initial conditions on the late time growth by 
studying four different initial configurations of interface numerically, and found 
that growth rates after reshock have a little dependence on the initial interface 
geometry. Leinov et al. [11] showed that the growth rate after reshocks is 
independent of the initial amplitude by placing the rigid end wall at different 
distances from the initial contact interface in RM instability experiments. 
     In those literatures published, the initial flows were confined to a uniform 
flow field, and nobody investigated the interface instability in the initial 
nonuniform flows. We firstly investigated the effects of the initial nonuniform 
flows on the evolution of the unreshocked instability with the experiment and 
numerical simulation of double perturbed interface [12]. And the initial Gaussian 
density distribution of the nonuniform flows was determined quantitatively by 
the combination of numerical simulation and experimental phenomena and data. 
This work is important for the initial conditions setting and experimental data 
analysis in experimental study of RM instability. Then we investigate the effects 
of the nonuniformity of the initial flows on the evolution of the mixing layer in 
RM instability under reshocks. Numerical simulations of RM instability with 
reshock for two initial nonuniform flows are performed. The quantitative 
analysis on the mixing width and circulations demonstrates the effects of initial 
conditions on the interface instability. The evolution principle of interface 
instability in the strongly nonlinear regime after reshock in the nonuniform flows 
is obtained. These results are expected to shed new light on the turbulent mixing 
induced by RM instability. 
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2 Governing equation, algorithm and MVFT code 

The numerical simulations have been done by our large eddy simulation code 
MVFT (multi-viscous flow and turbulent). The code MVFT can be used to 
simulate multi-component flows, and compute shocks, contact discontinuities 
and material interfaces at high accuracy. 
     MVFT applies the piecewise parabolic method [13] to interpolate physical 
quantities, the Vreman [14] subgrid eddy viscosity model to conduct the large 
eddy simulation, and solves the Navier-Stokes equations, 
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( 2 3 ( ))ij l i j j i ij k ku x u x u xσ µ δ= ∂ ∂ + ∂ ∂ − ∂ ∂    is the viscous stress tensor, 

( )ij i j i ju u u uτ ρ= − is the subgrid scale (SGS) stress tensor, j jq Q+  is the energy 

flux of unit time and space, j l jq T xλ= − ∂ ∂ , j t jQ T xλ= − ∂ ∂ , 

,l l p r lc pλ µ= , ,t t p r tc pλ µ= , l tD D D= + , ,c t t tS Dµ ρ= . lµ is the fluid 

viscosity, tµ is the turbulent viscosity, T is the temperature, lλ  is the efficient 
heat-transfer coefficient, pc  is the specific heat of fluid, ,r lp  is the Prandtl 

number, lD  is the diffusion coefficient and tD  is the turbulent diffusion 
coefficient. An operator splitting technique is used to decompose the physical 
problems into three sub-processes in MVFT, i.e., the computations of inviscid 
flux, viscous flux and heat flux. For the inviscid flux, the three-dimensional 
problem can be simplified into three 1D problems by dimension-splitting 
technique. For each 1D problem, we apply two-step Lagrange-Remap algorithm 
to solve the equations. The latter is calculated by utilizing a central difference 
scheme, in conjunction with a second order Runge-Kutta method. The numerical 
algorithms and SGS turbulent model have been presented in the author’s 
literature [15]. 

3 Numerical simulation and analysis 

The experimental gases are air and SF6, and the SF6 gas constitutes the initial 
nonuniform flow field. Figure 1 shows the initial structure diagram of shock tube 
experiment with 20 10× cm2 rectangular cross section and computed domain. The 
incident shock wave mach number is 1.27 in air. The air shock wave through the 
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air and SF6 interface, and enter into the SF6 gas nonuniform flow field. Two 
different kinds of initial sinusoidal perturbations with the same wavelength and 
different amplitude on the interface are set. The wavelength is 0.05m, the 
amplitudes are 5.0×10-3 m and 7.5×10-3 m corresponding to 0.0 0.0875y≤ < m 
and 0.0875 0.2y< ≤ m. The initial shock front is located at x= 35.56 10−× m, the 
equilibrium position of perturbation is at x = 0.016m, the range of observation 
test window is [0.038m, 0.25m] in the x direction. Table I summarizes the 
properties of air and SF6 gas in the present experiment at 1 atmospheric pressure 
and 20°C. 

Table 1:  Properties of air and SF6 gases. 

 
 

Gases 

 
Density 
(kg/m3) 

 
Specific 
heat ratio 

Kinematic 
viscosity 

(10-6 m2/s) 

 
Prandtl 
number 

Diffusion 
coefficient 

in air (cm2/s) 
Air 
SF6 

1.29 
5.34 

1.40 
1.0 09 

15.7 
2.47 

0.71 
0.90 

0.204 
0.097 

 

 

Figure 1: Initial structure diagram in the shock tube. 
 

     For the initial non uniform SF6 gas flow field, numerical simulation is used to 
approximately describe the dissipative transition layer [13] In the dissipative 
transition layer, SF6 gas density is calculated by Gaussian function: 

. 

 
2 2

6

(( ) / )( ) cy y
SFy e δρ ρ − −=  (2) 

where yc=0, and δ=0.3729m. The calculating region is discretized into 
540 400× grids. Sample images from the experiment and the corresponding 
numerical results are shown in Figure 2. It can be seen that, due to the 
nonuniform flow field of SF6 gas, the density distribution changes from high to 
low along the shock tube vertically, and this results in the propagating velocity 
of shock wave in the upper part of shock tube faster than in the bottom, and 
forms an oblique shock wave front. The calculated development of the interface 
shape, location, and oblique shock wave propagating features are consistent with 
the experimental results. Figure 3 shows that the calculated results of uniform 
flow are quite different from the nonuniform flow results. Figure 4 shows the 
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comparison of location of three test lines at different times between experiment 
and simulation. The largest difference is about 5%, this difference may be due to 
the initial approximation of the real situation. Figure 5 shows the comparison 
between perturbation amplitude of experiment, numerical computing, theoretical 
model, in which the bar denotes the experimental error about ± 10%. We can 
see that, the difference between numerical and experimental values were within 
10%. 

   
(a) t=0.4ms                         (b) t=0.8ms 

   
(c) t=1.2ms                       (d) t=1.6ms 

Figure 2: Schlieren photography pictures (right column) and numerical 
simulation results by MVFT2D (left column) at a certain time. 

          

Figure 3: The difference of results at t=1.0ms between the initial uniform and 
nonuniform flow ((a) Initial uniform flow (b) Initial non-uniform 
flow). 

 

Figure 4: Shock front locations of the experiment and calculated results on 
the three test lines at different times. 

 

(a) (b) 
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Figure 5: Perturbation amplitudes of the experiment, numerical computing, 
and comparison with the theoretical model. 

 
     In order to investigate the effect of the nonuniformity of flows on the 
evolution of instability, we perform the numerical study of the instability and 
mixing with the initial Gaussian distribution nonuniform flows of two different 
nonuniform coefficients (δ1=0.6162, and δ2=0.4961) under reshocks. The initial 
Air/ SF6 interface for single-mode sinusoidal perturbation is that the wavelength 
is λ=0.05m, and the amplitude is 5.0×10-3 m. The incident shock wave Mach 
number is 1.25 in air. The less the nonuniform coefficient is, the stronger the 
nonuniformity of the flow is. 
     Figure 6 shows the density contour images of the numerical results by MVFT 
at several times, the left, middle and right columns correspond with the uniform 
initial condition simulation results, the δ1 and δ2 nonuniform Gaussian function 
cases. Figure 6 indicates qualitatively that, the disturbed interface can preserve 
good periodicity before and after reshock. The nonuniformity resulted from the 
density variances of the SF6 gas in the nonuniform flows makes the transmitted 
and reflected shocks inclined. However, the simulation results show that there is 
a significant difference between the uniform and nonuniform flows before 
reshock, and the difference decreases in evidence after reshock. 
     To estimate the mixing width from the numerical simulations, we calculate 
the transversal averaged volume fraction ( )Y x  in each abscissa x, and define the 
abscissa x between of the ( )Y x  0.01 and 0.99 as the mixing zone width. Figure 7 
shows the mixing width history of the initial uniform and nonuniform flow in 
RM instability. It points out that the growth of the mixing width for the initial 
nonuniform flows is greater than the uniform flow, and the less the nonuniform 
coefficient is, the faster the growth of mixing width is, but the difference among 
the three different flow configurations diminishes after reshock. These results 
indicate that the evolution of the instability has great dependence on the 
nonuniformity of the initial flow in the linear and weakly nonlinear regime prior 
to reshock, however, the effect of the nonuniformity is reduced significantly with 
the instability entering the strongly nonlinear regime after reshock. Although the 
growth of the perturbation enhances, the amplitude of the perturbation is close to 
a uniform flow comparing with the previous regime. 
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Figure 6: (Color online) Density contour images of the numerical simulation 
result by MVFT at a certain time (a) 0.5ms, (b) 1.0ms, (c) 1.5ms, 
(d) 2.0ms, (e) 2.5ms and (f) 3.0ms. (The left column with uniform 
initial conditions, the middle column with a δ1 nonuniform 
Gaussian function and the right column with a δ2 
nonuniform Gaussian function. The small arrow denotes the 
direction of propagation of the shock wave fronts before reshock 
the interface.). 

 

 

Figure 7: Mixing width history calculations of the initial uniform and 
nonuniform flow in RM instability. 
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     This evolution process of the mixing width is a macro description of 
numerical simulation to RM instability and mixing. To interpret the phenomena, 
the analysis of the underlying mechanism resulting in RM instability is required, 
namely the analysis of the effects of the vorticity deposited by the baroclinic 
torque production term and the circulation in the mixing zone induced by RM 
instability. The vorticity is determined by calculating the curl of the velocity 
field in 2D flow: 

 ( , , )x y t v x u yω = ∇× = ∂ ∂ −∂ ∂V  (3) 
where V is the 2D velocity vector, and u and v are the x and y components of the 
velocity. Circulation is a measure of the average vorticity over an area A, 

 
( ) ( , , )

A
t x y t dAωΓ = ⋅∫  (4) 

 

 

Figure 8: The positive circulation, the negative circulation and the total 
circulation evolution over time of the flow field of the two elliptic 
gas cylinders. 

     Figure 8 shows the positive circulation +Γ , the negative circulation −Γ  and 
the total circulation + −Γ = Γ + Γ evolution over time of the flow field. In figure 8, 
the results indicate that +Γ and −Γ conserve the very good symmetry for the 
initial uniform flow, and the total circulation Γ is 0 all the time. For the initial 
nonuniform flows, +Γ and −Γ no longer conserve symmetry due to the 
dissymmetry growth of the perturbation, and the total circulations of the flows 
Γ are none zero. In order to further analyze the differences among three sets of 
curves in figure 8, the relative errors of the circulations (both positive +Γ and 
negative −Γ ) between the two initial nonuniform and the uniform flows are 
calculated and presented in the figure 9(a) and (b), respectively. Figure 9(a) 
shows the maximum differences of +Γ and −Γ are 9.8% and 13.8% separately 
before reshock, the maximum differences reach 19.7% and 24.8% in the 
transition regime, and the maximum departures are only 5.6% and 4.8% after 
reshock for the flow with the nonuniform coefficient δ1. Figure 9(b) shows the 
maximum differences of +Γ and −Γ are 13.6% and 24.5%, 32.7% and 55.7%, 
7.3% and 4.0% before reshock, in the transition regime and after reshock  
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Figure 9: Relative error between the flow field in the positive and negative 
circulations, including the comparison between the nonuniform 
coefficients δ1 and δ2 with uniform flow (in Figure 7(a) and Figure 
7(b) ) and the nonuniform coefficient between the δ1 and δ2 (in 
Figure 7(c)). The reshock time is 1.73ms and 1.70ms and 1.70ms 
respectively in the case of three graphical. 

separately for the flow with the nonuniform coefficient δ2. These results indicate 
that the differences between the nonuniform coefficients comparing to the 
uniform flow exist prior to reshock and in the transition regime, and diminish 
significantly after reshock with the mean value 5% approximately. Because the 
circulation in the flow exists in the interface zone, it affects the evolution of the 
mixing zone directly. In addition, the difference between two different initial 
nonuniform flows is also exhibited in figure 9(c) which shows that the maximum 
differences of +Γ and −Γ are 5.3% and 7.6% before reshock, 13.9% and 18.2% 
in the transition regime, 3.6% and 3.7% after reshock separately.  

4 Summary 

In summary, we numerically simulate RM instability and mixing of Air/SF6 
interface with sinusoidal perturbation under shocks and reshocks, by 
constructing two initial nonuniform density flows of Gaussian distribution 
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function with different coefficients of δ1=0.6162 and δ2=0.4961. The distinctions 
of evolution and development of mixing zone between nonuniform cases and 
uniform one are analyzed. The results demonstrate that the evolution of the 
instability has a great dependence on the nonuniformity of the initial flow field in 
the linear and weak nonlinear regime prior to reshock. Nevertheless, the effect of 
the nonuniformity is reduced significantly as the instability enters the strongly 
nonlinear regime after reshock. Although is the growth of the perturbation is 
enhanced in this regime, the amplitude of the perturbation is close to that of a 
uniform flow comparing with the previous regime. The reason of the above 
mentioned phenomena is presented with the quantitative analysis of the 
circulation. In addition, the comparisons of the computational results between 
two initial nonuniform flows are shown. This paper further demonstrates that the 
effects of the initial conditions of flows on the macro scale characteristics are 
weakened gradually in the later time of RM instability. Naturally, we speculate 
that the flow field will completely forget the effects of the initial conditions in 
the fully developed regime, which can become turbulent. 
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