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Abstract 

The Burgers’ equation is an important and basic nonlinear partial differential 
equation in fluid dynamics, and has been used as a model equation in other 
fields, such as modeling of shock waves, gas dynamics, turbulence, and large 
bubble structures consisting of clusters of galaxies in space. Many researchers 
have proposed various numerical methods for solving the Burgers’ equation, 
such as the finite difference method, finite element method, boundary element 
method, etc. The objective of the present research is to propose Cole-Hopf the 
transformation method (CHTM) and direct method (DM) based on discretization 
of the moving particle semi-implicit (MPS) method for solving the two-
dimensional Burgers’ equation. The numerical results of one and  
two-dimensional problems are compared with exact solutions and other 
numerical solutions, and the validity of the present methods is shown. 
Keywords: Burgers’ equation, Cole-Hopf transformation, direct method, 
discretization of MPS method, two-dimensional problem. 

1 Introduction 

The Burgers’ equation is an important and basic nonlinear partial differential 
equation in fluid dynamics, and has been used as a model equation in other 
fields, such as modeling of shock waves, gas dynamics, and turbulence, etc. [1–
6]. It is well known that even if a smoothed initial condition is given, a shock 
wave having sharp serrated shape is formed in finite time. Furthermore, one 
characteristic of the nonlinear one-dimensional Burgers’ equation is that it can be 
reduced to a linear one-dimensional diffusion equation using the Cole-Hopf 
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transformation [5]. So far, many different numerical methods to solve the 
Burgers’ equation, such as finite difference method [6–10], finite element 
method [11–13], boundary element method and meshless method [14–17] and 
others [18, 19] have been proposed. 
     On the other hand, in recent years, the Moving- Particle Semi-implicit (MPS) 
method has been attracting much interest [20, 21]. The MPS method is a leading 
numerical-analysis technique that has been used to investigate, complicated 
phenomena such as incompressible inviscid flows with free surfaces and the 
collapse of a column of water. One advantage of the MPS method is that it needs 
no integral calculations, unlike finite elements methods, and it is expected to 
greatly reduce CPU time. It is also a powerful method for phenomenon in which 
discontinuous points appear. However, to the best of the author’s knowledge, no 
numerical solutions for the Burgers’ equation by the MPS method have been 
reported.  
     The objective of the present research is to propose numerical methods based 
on the discretization of the MPS method for solving the two-dimensional 
Burgers’ equations. When we can’t obtain the solution of the partial differential 
equation of the Cole-Hopf transformation explicitly, we have to solve it 
numerically in advance to obtain the initial conditions for after the 
transformations. Further, we need extra calculations to carry out the inverse 
transformation to real space. This leads to increased CPU time. Therefore, 
another purpose of the present paper is to propose a numerical method without 
the Cole-Hopf transformation. In this paper, a numerical method which uses the 
Cole-Hopf transformation is called the “Cole-Hopf transformation method” 
(CHTM), and a numerical method without using the Cole-Hopf transformation is 
called the “direct method” (DM).  
     Several one and two-dimensional analysis are carried out by the two 
numerical methods. As a result, the solutions of the two methods show good 
agreement with the analytical solutions and other numerical solutions for one and 
two-dimensional problems, indicating the validities of the present methods. 

2 Governing equations 

In the Cartesian co-ordinate system 𝑂 − 𝑥𝑦, we consider the following system of 
two-dimensional nonlinear Burgers’ equations : 

 𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= 1
𝑅𝑒
�𝜕

2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

� , (𝑥,𝑦, 𝑡) ∈ 𝐷 × (0,𝑇] (2.1) 

 
𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= 1
𝑅𝑒
�𝜕

2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

� , (𝑥,𝑦, 𝑡) ∈ 𝐷 × (0,𝑇] (2.2) 

subject to the initial conditions: 

 𝑢(𝑥,𝑦, 0) = 𝑢0(𝑥,𝑦), (𝑥,𝑦) ∈ 𝐷  (2.3) 
 𝑣(𝑥,𝑦, 0) = 𝑣0(𝑥,𝑦), (𝑥,𝑦) ∈ 𝐷   (2.4) 

the boundary conditions: 
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𝑢(𝑥,𝑦, 𝑡) = 𝑓(𝑥,𝑦, 𝑡), (𝑥,𝑦, 𝑡) ∈ 𝜕𝐷 × (0,𝑇]                  (2.5) 
𝑣(𝑥,𝑦, 𝑡) = 𝑔(𝑥,𝑦, 𝑡), (𝑥,𝑦, 𝑡) ∈ 𝜕𝐷 × (0,𝑇]                  (2.6) 

 
and the potential symmetry condition: 
 

𝜕𝑢
𝜕𝑦

= 𝜕𝑣
𝜕𝑥

,                                                      (2.7) 
 
where 𝐷 is a domain and 𝜕𝐷 is its boundary. In the above equations, 𝑡 is time, 
and 𝑢(𝑥,𝑦, 𝑡) and v(𝑥,𝑦, 𝑡) are the velocity components to be determined  in the 
𝑥 direction and the 𝑦 direction respectively, and 𝑇 is time of analysis. In 
addition, 𝑢0(𝑥,𝑦), 𝑣0(𝑥,𝑦), 𝑓(𝑥,𝑦, 𝑡) and 𝑔(𝑥,𝑦, 𝑡) are known functions and 𝑅𝑒 
is the Reynolds number. 

3 Discretization of MPS method 

In this section, the discretization of the MPS method will be described briefly 
[20, 21]. The discretization of the gradient vector of a scalar function 𝜙(𝑥,𝑦) at 
the 𝑖-particle is given by eqn. (3.1): 
 

〈∇𝜙〉𝑖 = 𝑑
𝑛𝑖
∑ �

𝜙𝑗−𝜙𝑖
�𝒓𝑗−𝒓𝑖�

2 �𝒓𝑗 − 𝒓𝑖�𝑤�𝒓𝑗 − 𝒓𝑖�� ,𝑗≠𝑖                (3.1) 

 
where 𝜙𝑖  ,𝜙𝑗 are the values of the scalar function 𝜙(𝑥,𝑦), 𝒓𝑖 ,  𝒓𝑗 are the position 
vectors of 𝑖-particle and 𝑗-particle respectively, �𝒓𝑖 − 𝒓𝑗� is the distance between 
the 𝑖-particle and 𝑗-particle, 𝑛𝑖 is the particle density, 𝑑 is the dimensional 
number, the function 𝑤 is the weighted function and 𝛴 denotes summation with 
respect to 𝑗 ≠ 𝑖. The weighted function 𝑤 is given by the following eqn. (3.2): 
 

𝑤(𝑟) = �
𝑟𝑒
𝑟
− 1     (0 ≤ 𝑟 < 𝑟𝑒) 

0                      (𝑟𝑒 ≤ 𝑟)
�,                                (3.2) 

 
where, 𝑟 is the distance between two particles, and 𝑟𝑒  is the radius of the 
interaction. Hence, if 𝑟 is less than 𝑟𝑒 , there is interaction between two particles. 
The particle density 𝑛𝑖 is given by eqn.(3.3), 

𝑛𝑖 = ∑ 𝑤�𝒓𝑗 − 𝒓𝑖�𝑗≠𝑖 .                                           (3.3) 
 
     The discretization of the Laplacian operator of the scalar function 𝜙(𝑥,𝑦) at 
the 𝑖-particle is given by eqn.(3.4): 
 

〈∇2𝜙〉𝑖 = 2𝑑
𝜆𝑛𝑖

∑ ��𝜙𝑗 − 𝜙𝑖�𝑤�𝒓𝑗 − 𝒓𝑖��𝑗≠𝑖 ,                        (3.4) 
 
where, 𝜆 is a constant given by the following eqn. (3.5): 
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𝜆 =
∑ �𝒓𝑗 − 𝒓𝑖�

2𝑤��𝒓𝑖 − 𝒓𝑗��𝑗≠𝑖

∑ 𝑤��𝒓𝑖 − 𝒓𝑗��𝑗≠𝑖
.                                  (3.5) 

4 Analytical theory and basic equations for CHTM 

The well known Cole-Hopf transformation equations are given as follows [5]: 
 

𝑢(𝑥,𝑦, 𝑡) = −2 1
𝑅𝑒

1
𝜙
𝜕𝜙
𝜕𝑥

                                            (4.1) 

𝑣(𝑥,𝑦, 𝑡) = −2 1
𝑅𝑒

1
𝜙
𝜕𝜙
𝜕𝑦

.                                              (4.2) 
 
     For instance, according to references [5, 13], we omit some details due to 
limitations of space though, the two-dimensional Burgers’ eqns (2.1)–(2.2) can 
be transformed to the following linear diffusion eqn. (4.3) using the Cole-Hopf 
transformation: 
 

𝜕𝜙
𝜕𝑡

= 1
𝑅𝑒
�𝜕

2𝜙
𝜕𝑥2

+ 𝜕2𝜙
𝜕𝑦2

�.                                         (4.3) 
 
     Making use of the Euler’s explicit scheme to 𝜕𝜙 𝜕𝑡⁄ , and applying the 
discretization of the MPS method to the Laplacian, we can derive the following 
basic eqn. (4.4) for the CHTM: 
 

𝜙𝑖𝑠+1 = 𝜙𝑖𝑠 + Δ𝑡 ∙ 1
𝑅𝑒

2𝑑
𝜆𝑛𝑖

∑ ��𝜙𝑗𝑠 − 𝜙𝑖𝑠�𝑤��𝒓𝑗 − 𝒓𝑖���,            𝑗≠𝑖 (4.4) 
 
where the upper suffix 𝑠 denotes a time step number, the lower suffix 𝑖 means a 
particle number, and Δ𝑡 is a time increment. In the present study, we adopt the 
next forward finite difference approximations (4.5)–(4.6) to evaluate 
𝜕𝜙 𝜕𝑥⁄ , 𝜕𝜙 𝜕𝑥⁄  in eqns (4.1)–(4.2): 
 

𝜕𝜙
𝜕𝑥

= 𝜙(𝑥+𝑑𝑥,𝑦,𝑡)−𝜙(𝑥,𝑦,𝑡)
𝑑𝑥

                                            (4.5) 
 

𝜕𝜙
𝜕𝑦

= 𝜙(𝑥,𝑦+𝑑𝑦,𝑡)−𝜙(𝑥,𝑦,𝑡)
𝑑𝑦

.                                        (4.6) 

 
     Therefore, in addition to calculation of the values 𝜙(𝑥,𝑦, 𝑡), calculations of 
the values 𝜙(𝑥 + 𝑑𝑥,𝑦, 𝑡) and 𝜙(𝑥,𝑦 + 𝑑𝑦, 𝑡) are needed in the CHTM.  

5 Analytical theory and basic equations for DM 

In eqns (2.1)–(2.2), applying the Euler’s explicit method to the time derivatives 
of the left hand side, and using the discretizations of the MPS method to the 
gradients and Laplacian, we can obtain the following basic eqns (5.1)–(5.2) for 
the DM: 
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 𝑢𝑖𝑠+1 = 𝑢𝑖𝑠 ∙ Δ𝑡  

−Δ𝑡

⎣
⎢
⎢
⎢
⎡ 𝑢𝑖𝑠 ∙ �

𝑑
𝑛𝑖
∑

𝑢𝑗
𝑠−𝑢𝑖

𝑠

�𝒓𝑗−𝒓𝑖�
2 �𝒓𝑗 − 𝒓𝑖�𝑗≠𝑖 𝑤��𝒓𝑗 − 𝒓𝑖���

𝑥

+𝑣𝑖𝑠 ∙ �
𝑑
𝑛𝑖
∑

𝑢𝑗
𝑠−𝑢𝑖

𝑠

�𝒓𝑗−𝒓𝑖�
2 �𝒓𝑗 − 𝒓𝑖�𝑗≠𝑖 𝑤��𝒓𝑗 − 𝒓𝑖���

𝑦⎦
⎥
⎥
⎥
⎤

                    (5.1) 

+∆𝑡 ∙ 1
𝑅𝑒
∙ 𝑑
𝜆𝑛𝑖

∑ ��𝑢𝑗𝑠 − 𝑢𝑖𝑠�𝑤��𝒓𝑗 − 𝒓𝑖���𝑗≠𝑖   

𝑣𝑖𝑠+1 = 𝑣𝑖𝑠 ∙ Δ𝑡 

 −Δ𝑡

⎣
⎢
⎢
⎢
⎡ 𝑢𝑖𝑠 ∙ �

𝑑
𝑛𝑖
∑

𝑣𝑗
𝑠−𝑣𝑖

𝑠

�𝒓𝑗−𝒓𝑖�
2 �𝒓𝑗 − 𝒓𝑖�𝑗≠𝑖 𝑤��𝒓𝑗 − 𝒓𝑖���

𝑥

+𝑣𝑖𝑠 ∙ �
𝑑
𝑛𝑖
∑

𝑣𝑗
𝑠−𝑣𝑖

𝑠

�𝒓𝑗−𝒓𝑖�
2 �𝒓𝑗 − 𝒓𝑖�𝑗≠𝑖 𝑤��𝒓𝑗 − 𝒓𝑖���

𝑦⎦
⎥
⎥
⎥
⎤

 (5.2) 

 

+∆𝑡 ∙ 1
𝑅𝑒
∙ 𝑑
𝜆𝑛𝑖

∑ ��𝑣𝑗𝑠 − 𝑣𝑖𝑠�𝑤��𝒓𝑗 − 𝒓𝑖���𝑗≠𝑖 .  
  
     In eqns (5.1)-(5.2), the upper suffix 𝑠 of the velocity components 𝑢𝑖𝑠 and 𝑣𝑖𝑠 
indicates a time step number, and the terms {  }𝑥 and {  }𝑦 in the right hand side, 
denote the 𝑥 and 𝑦 components of the gradient vectors 𝛻𝑢 and 𝛻𝑣. 

6 Test problems and discussion 

In the following analysis, the radius of the interaction 𝑟𝑒  in eqn.(3.2) is set to 
two times of the minimum distance between two particles. Values from two to 
four times of the minimum distance between two arbitrary particles is 
recommended in references [20, 21]. 

6.1 One-dimensional problem (1) 

We consider the following initial condition and boundary condition: 

 𝑢(𝑥, 0) = sin(𝜋𝑥) ,      0 < 𝑥 < 1  
 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0       0 ≤ 𝑡.  

     In both the CHTM and the DM, the numerical computations were performed 
using uniform 41 particles, the time increment  ∆𝑡 = 1.0 × 10−3, and 𝑑𝑥 =
1.0 × 10−6  in the forward difference approximation eqn. (4.5) of the Cole-Hopf 
transformation. 
     Figures 1 and 2 show the results of the CHTM and the DM with exact 
solutions for 𝑅𝑒 = 100 [9–11, 14]. These figures illustrate the velocity of the 
fluid at time 𝑡 = 0.2, 0.4, 0.6, 0.8, 1.0. Comparing the results of the CHTM and 
the DM, we can see that the profiles of the CHTM are a little bit sharper than 
those of the DM near the right-hand boundary.  
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Figure 1: Numerical solutions of one-dimensional problem(1) by the CHTM 
at different times for 𝑅𝑒 = 100, ∆𝑡 = 1.0 × 10−3. 

 

 

Figure 2: Numerical solutions of one-dimensional problem (1) by the DM at 
different times for 𝑅𝑒 = 100, ∆𝑡 = 1.0 × 10−3. 

6.2 One-dimensional problem (2) 

Now, as the second verification problem, we will consider a one-dimensional 
problem treated in reference [7].  
     The initial condition and the boundary condition of the problem are given as 
follows respectively: 
 

0 

0.5 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

u(
x,

t)
 

x  co-ordinate 

t=0.2 present t=0.4 present t=0.6 present 

t=0.8 present t=1.0 present t=0.4 exact 

t=0.6 exact t=0.8 exact t=1.0 exact 

0 

0.5 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

U
(x

,t
) 

x  co-ordinate 

t=0.2 presen t=0.4 present t=0.6 present 

t=0.8 present t=1.0 present t=0.4 exact 

t=0.6 exact t=0.8 exact t=1.0 exact 
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 𝑢(𝑥, 0) = 2𝜋𝑠𝑖𝑛𝜋𝑥+8𝜋𝑠𝑖𝑛2𝜋𝑥
4+𝑐𝑜𝑠𝜋𝑥+2𝑐𝑜𝑠2𝜋𝑥

,      0 < 𝑥 < 1  
 

 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0       0 ≤ 𝑡.  
 

     The numerical computation was performed using uniform 41 particles along 
the 𝑥 axis and the time increment ∆𝑡 = 1.0 × 10−4.  
     The results by the DM and the exact solutions at different time levels for 
𝑅𝑒 = 1.0 are shown in Figure 3. In reference [7], the equation of the exact 
solution of the present problem has been given as follows: 
 
 𝑢(𝑥, 𝑡) = 2𝜋�𝑒𝑥𝑝�−𝜋2𝑡�𝑠𝑖𝑛𝜋𝑥+4𝑒𝑥𝑝�−4𝜋2𝑡�𝑠𝑖𝑛2𝜋𝑥�

4+𝑒𝑥𝑝(−𝜋2𝑡)𝑐𝑜𝑠𝜋𝑥+2𝑒𝑥𝑝(−4𝜋2𝑡)𝑐𝑜𝑠2𝜋𝑥
.  

 

 

Figure 3: Numerical solutions of one-dimensional problem(2) by the DM at 
different times for 𝑅𝑒 = 1.0, ∆𝑡 = 1.0 × 10−4. 

     We confirmed that at the time step 𝑡 = 1.0, the relative maximum error 
between the present result and the exact solution is about zero percent again. 

6.3 Two-dimensional problem (1) 

We consider the Burger’s eqns (2.1)–(2.2)  over a square domain 𝐷 =
{(𝑥,𝑦): 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}, with the initial conditions: 
 

 � 𝑢(𝑥,𝑦, 0) = 𝑠𝑖𝑛(𝜋𝑥)𝑐𝑜𝑠(𝜋𝑦)
𝑣(𝑥,𝑦, 0) = cos(𝜋𝑥) sin (𝜋𝑦)�          0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1,  

 
and boundary conditions: 
 

-8 
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-4 

-2 

0 

2 

4 

6 

8 

0 0.2 0.4 0.6 0.8 1 u(
x,

 t)
 

x  co-ordinate 

t=0.0 

t=0.025 present 

t=0.05 present 

t=0.1 present 

t=1.0 present 

t=0.025 exact 

t=0.05 exact 

t=0.1 exact 

t=1.0 exact 
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 �
𝑢(0,𝑦, 𝑡) = 𝑢(1, 𝑦, 𝑡) = 0
𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 1, 𝑡) = 0

𝜕𝑢 𝜕𝑛(𝑥, 0, 𝑡)⁄ = 𝜕𝑢 𝜕𝑛(𝑥, 1, 𝑡) = 0⁄
𝜕𝑣 𝜕𝑛(0,𝑦, 𝑡)⁄ = 𝜕𝑣 𝜕𝑛(1, 𝑦, 𝑡) = 0⁄ ⎭

⎬

⎫
      0 ≤ 𝑡.  

 
     The numerical computations were performed in the CHTM and the DM, 
using 21 particles in the 𝑥 and 𝑦 direction respectively, total 441 particles located 
uniformly, the time increment ∆𝑡 = 1.0 × 10−3, for the 𝑅𝑒 = 100. In addition, 
the value 𝑑𝑥 = 1.0 × 10−3 is used in the forward difference approximation 
eqns (4.5)–(4.6) of the CHTM. The results analyzed by the CHTM and the DM 
at different times are shown in Figures 4 and 5 respectively. The results in 
Figures 4 and 5 denote the distributions of 𝑢(𝑥, 𝑥, 𝑡) along the diagonal line of 
the square region, and EFCGM means results of the element-free characteristic 
Galerkin method [17]. And, by antisymmetry of the results, the present results 
are plotted in the range for only 0 ≤ 𝑥 ≤ 0.5. We can see that the results of both 
methods are in good agreement with those of the EFCGM. Through the present 
analysis, the solutions by the DM can be considered to have good accuracy as 
approximations again.  
 
 

 

Figure 4: Numerical solutions of two-dimensional problem(1) by the CHTM 
at different times for 𝑅𝑒 = 100, ∆𝑡 = 1.0 × 10−3. 
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Figure 5: Numerical solutions of two-dimensional problem (1) by the DM at 
different times for 𝑅𝑒 = 100, ∆𝑡 = 1.0 × 10−3. 

6.4 Two-dimensional problem (2) 

Let us consider the other two-dimensional problems [6, 8, 17]. The exact 
solution of the two-dimensional eqns (2.1)–(2.2) can be generated by using the 
Cole-Hopf transformation which is: 
 

 𝑢(𝑥,𝑦, 𝑡) = 3
4
− 1

4[1+exp((−4x+4y−t)Re 32⁄ )]
 ,  

 𝑣(𝑥,𝑦, 𝑡) = 3
4

+ 1
4[1+exp ((−4𝑥+4𝑦−𝑡)𝑅𝑒 32⁄ )]

 .  

 

Table 1:  Comparison of present DM with exact values of 𝒖 for 𝑹𝒆 = 𝟏𝟎𝟎. 

t=0.01 t=0.5 t=2.0 

coordinate present exact present exact present exact 
(0.1, 0.1) 0.62243 0.62305 0.53346 0.54332 0.50036 0.50048 
(0.5, 0.1) 0.50161 0.50162 0.50025 0.50035 0.50000 0.50000 
(0.9, 0.1) 0.50001 0.50001 0.50000 0.50000 0.50000 0.50000 
(0.3, 0.3) 0.62315 0.62305 0.51551 0.54332 0.50017 0.50048 
(07, 0.3) 0.50161 0.50162 0.50006 0.50035 0.50000 0.50000 
(0.5, 0.5) 0.62315 0.62305 0.53422 0.54332 0.50010 0.50048 
(0.9, 0.5) 0.50161 0.50162 0.50023 0.50035 0.50000 0.50000 
(0.7, 0.7) 0.62315 0.62305 0.54147 0.54332 0.50025 0.50048 
(0.1, 0.9) 0.74999 0.74999 0.74989 0.74995 0.74004 0.74426 
(0.9, 0.9) 0.62305 0.62305 0.53796 0.54332 0.50041 0.50048 
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Table 2:  Comparison of present DM with exact values of 𝒗 for 𝑹𝒆 = 𝟏𝟎𝟎. 

t=0.01 t=0.5 t=2.0 

coordinate present exact present exact present exact 
(0.1, 0.1) 0.87758 0.87695 0.96654 0.95668 0.99964 0.99952 
(0.5, 0.1) 0.99839 0.99838 0.99975 0.99965 1.00000 1.00000 
(0.9, 0.1) 0.99999 0.99999 0.99999 1.00000 1.00000 1.00000 
(0.3, 0.3) 0.87685 0.87695 0.98449 0.95668 0.99983 0.99952 
(07, 0.3) 0.99839 0.99838 0.99994 0.99965 1.00000 1.00000 
(0.5, 0.5) 0.87685 0.87695 0.96578 0.95668 0.99990 0.99952 
(0.9, 0.5) 0.99839 0.99838 0.99977 0.99965 1.00000 1.00000 
(0.7, 0.7) 0.87685 0.87695 0.95853 0.95668 0.99975 0.99952 
(0.1, 0.9) 0.75001 0.75001 0.75011 0.75005 0.75996 0.75574 
(0.9, 0.9) 0.87695 0.87695 0.96204 0.95668 0.99959 0.99952 

 
     The computational domain is a square 𝐷 = {(𝑥,𝑦) ∶ 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}, 
and the initial and boundary conditions are taken from the exact solution. The 
analysis was performed by the DM using the uniform 441 particles and the time 
increment ∆𝑡 = 1.0 × 10−3. Tables 1 and 2 give the numerical and exact values 
of 𝑢(𝑥,𝑦, 𝑡) and 𝑣(𝑥,𝑦, 𝑡) at some typical particle points for 𝑅𝑒 = 100 at time 
steps 𝑡 = 0.01, 0.5, 2.0. The solutions by the DM can be considered to have 
good accuracy as an approximation again. 

7 Conclusions 

In this paper, two numerical methods based on the discretization of the MPS 
method for solving the two-dimensional nonlinear Burgers’ equation have been 
proposed.  
     Carrying out the several analyses of the one-dimensional and two-
dimensional problems, we can see that numerical results obtained by the both 
proposed methods are in good agreement with the exact solutions and the other 
numerical solutions. Therefore, the accuracy of the numerical solutions indicates 
that both the CHTM and the DM methods are well suited to solve the Burgers’ 
equations. Especially, the accuracy of the result by the DM was also shown.  
     However, as a rule, it is difficult to claim predominance of the CHTM and 
DM. It is important to select a good method according to initial conditions, 
boundary conditions, size of the degree of the freedom, and shapes of analysis 
domain etc. 
     Future work will be focused on analysis of large scale problems and practical 
problems in fields such as aerospace. 
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