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Abstract 

An alternative form for the identification of dynamic systems with the 
application of multi-objective optimization concepts, through the evolutionary 
algorithm MAGO is presented. A computational tool using operational data of a 
SISO system has been designed to automatically perform the construction and 
selection of the best model representing it. After a data acquisition, strategies for 
the system identification by parametric modelling are developed. The application 
on the fitness function of appropriate criteria to choose models representing the 
system is also studied. Different models (ARX, ARMAX, and OE) are built and 
compared. The models obtained, by evolution, provide better fit and final 
prediction error regarding that chosen by an expert. The computational effort is 
low considering that the proposed method is more effective on identification of 
dynamic systems. Applying this evolutionary method to more complex systems 
such as MISO, MIMO, and non-linear is proposed as future work. 
Keywords: computational and experimental methods, system identification, 
evolutionary computation, multi-criteria decision, multi-objective optimization. 

1 Introduction 

Representing the dynamics of a system by mathematical models from measured 
data is the objective of the system identification. Parametric models as ARX, 
ARMAX, OE, and others are employed for this purpose. Finding a model with 
an appropriate structure representing a system is a work that represents a 
considerable time demand. Typically, after applying system identification 

Computational Methods and Experimental Measurements XVI  31

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press

doi:10.2495/CMEM130031



methods, this leads to having several candidate models representing the system. 
The task of selecting models increases its complexity when the number of 
models grows significantly. To solve this matter, using an evolutionary 
algorithm a computational tool has been developed. This tool, from the system’s 
input and output data, builds, evaluates, and selects automatically, quickly, and 
efficiently the most appropriate identification model to represent a given 
problem. This paper begins with an introduction to systems identification, multi-
objective optimization, and evolutionary algorithms. It continues with the 
approach of their integration in a tool for constructing and selecting parametric 
models for dynamic systems. Results of two cases of study, one a known 
academic laboratory and the other a standard problem, are presented. It ends with 
conclusions and future work. 

2 Systems identification 

System identification can build mathematical models that represent roughly the 
dynamics of a system from measured data of input and output variables [2]. To 
define the structure of the problem may propose a new one or apply some known 
ones. Among the commonly used statistical models to represent the dynamics of 
a system are ARX, ARMAX, OE, BJ ARIMAX, and others [3]. For the study 
cases in this article the first three mentioned parametric models are applied. 

2.1 ARX models 

Present results in a linear regression. The ARX structure is a linear difference 
equation of the kind of equation (1).  
 

𝑦(𝑡) +  𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎) 
= 𝑏1𝑢(𝑡 − 𝑛𝑘) + ⋯+ 𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1)                    (1) 

 

The model can be written as 
 

       𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡)                             (2) 

2.2 ARMAX models 

Possess several improvements in relation to the ARX model, such as a different 
modeling of the noise. The ARMAX model is given by 

𝑦(𝑡) + 𝑎1(𝑡 − 1) + ⋯+ 𝑎𝑛𝑎𝑦(𝑡 − 𝑛𝑎) =  𝑏1𝑢(𝑡 − 𝑛𝑘) + ⋯ 
                    + 𝑏𝑛𝑏𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1 + 𝑒(𝑡) + 𝑐1𝑒(𝑡 − 1) + ⋯+ 𝑒𝑛𝑐𝑒(𝑡 − 𝑛𝑐)        (3) 

 
The equation is rewritten as 

 𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡 − 𝑛𝑘) + 𝐶(𝑞)𝑒(𝑡)                   (4) 
 

where q is the lag operator and polynomials A (q), B (q), and C (q) are given by 
 

          𝐴(𝑞) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋯+  𝑎𝑛𝑎𝑞−𝑛𝑎 
𝐵(𝑞) = 𝑏1 + 𝑏2𝑞−1 + 𝑏2𝑞−2 + ⋯+ 𝑏𝑛𝑏𝑞−𝑛𝑏+1 

𝐶(𝑞) = 1 +  𝐶1𝑞−1 + ⋯+ 𝐶𝑛𝑐𝑞−𝑛𝑐                      (5) 
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2.3 OE models 

Similar to the ARMAX model structure, use the Likelihood method to estimate 
the parameters of the polynomials. The model structure OE (Output Error) is 
given by  
 

 𝑦(𝑡) = 𝐵(𝑞)
𝐹(𝑞)

𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡)  (6) 
 

where the polynomials B (q) and F (q) are given by 
 

                                               𝐵(𝑞) = 𝑏1 + 𝑏2𝑞−1 +  𝑏2𝑞−2 + ⋯+  𝑏𝑛𝑏𝑞−𝑛𝑏+1     (7) 
𝐹(𝑞) = 1 + 𝑓1 𝑞−1 + ⋯+  𝑓𝑛𝑓 𝑞−𝑛𝑓 

     The model selection criteria used in this study are the polynomial degree, the 
final prediction error FPE, and the percentage of fit between the generated curve 
from measured data against that estimated by the model. However, from the 
statistical point of view there are other criteria that can be applied to evaluate and 
conclude whether a model is appropriate, such as CP (Mallows, 1964), CAT 
(Parzen, 1974), BIC (Sawa, 1978), and SBIC (Schwarz, 1978) [4]. 

2.4 Final prediction error – FPE 

Known as final prediction Akaike error provides a measure of the quality of a 
model by simulating with a data set. This criterion indicates that the most 
accurate model is the one with the lowest FPE. The calculation of the FPE is 
given by 
 𝐹𝑃𝐸 = 𝑉 �1+

𝑑
𝑁�

1−𝑑 𝑁�
�                              (8) 

 

where: V is the loss function. 
  D is the number of estimated parameters. 
  N is the number of values in the data set. 

2.5 Percentage of fit  

Percentage of fit represents the percentage of the output that the model can 
reproduce. It is expected to be a high setting of the fit percentage. This value is 
calculated with  
 

 𝐵𝐹 = �1 −  |𝑦−𝑦�|
|𝑦−𝑦�|� ∗ 100     (9) 

 

where:       y  are the output validation data.  
                  𝑦� are the output data estimated by the model.  

2.6 Polynomial degree 

This criterion seeks for a model whose structure is formed by least degree 
polynomials and presenting good characteristics of BF and FPE. Low order 
models are preferred in the analysis. An average between the polynomials of the 
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structures taking into account both the degree of the polynomial and the number 
of polynomials of the structure is proposed in  
 

𝑮𝑷 =
(𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 + 𝒙𝟒 + 𝒙𝟓)

𝟓
            

 
where: X1, X2, X3, and X4 represent the degrees of the polynomials used in the 
structures, and X5 the number of lags in the input. These parameters are 
represented in a matrix MInx5, being Xj the five components corresponding to the 
ith row of the matrix MI, with i = 1, 2, ... n (where n is the population size). 

3 Multi-objective optimization 

Most real-world problems require solving multiple objectives simultaneously [5]. 
In multi-objective optimization problems the following characteristics are found: 
• The objectives may have different units of measure. 
• There are conflicting objectives, which do not lead to a unique solution 

better than the set of solutions studied with regard to the expected 
objectives. Then a set of alternative solutions representing the best 
compromise between the objectives is obtained. 

• A decision maker with information of preferences to choose the solution to 
implement is needed. 

     The methods of multi-objective optimization problems are classified into: 

3.1 A priori methods 

Decision making is done before searching solutions. Scaling processes to 
combine the different objectives into a single objective are often used. This 
scaling process is performed based on preference information that the decision 
maker suggests. This way a single-objective optimization problem is obtained. 

3.2 A posteriori methods 

A decision is made once the search ends. The optimization process is performed 
without considering preference information. This leads to an optimal Pareto set 
from which a solution satisfying the preferences for the problem is chosen. 

3.3 Interactive or progressive methods  

The decision making is realized during the search. This is accomplished by 
presenting a set of compromising solutions to a decision maker in each 
optimization step. Thus the decision maker can provide information to guide the 
search process in future iterations. 

(10) 
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4 Multi-objective evolutionary algorithms 

The first evolutionary algorithms (EAs) that consider multiple objectives were 
developed in the 90s. Multi-Objective Evolutionary Algorithms (MOEAs) have 
been established as a method for approximating the Pareto-optimal front [5]. 
Methods for working with multiple objectives using EAs can be classified into 
methods of first and second generation. In the first generation are both the initial 
algorithms that do not consider Pareto concepts and algorithms that considered 
Pareto concepts but do not have preservation mechanisms of good solutions. The 
second generation consists of Pareto-based EAs that incorporate forms of elitism. 
Algorithms as MOGA, NSGA, and NPGA belong to the first generation. In the 
second generation are found algorithms as SPEA and NSGA-II [5]. Evolutionary 
techniques have been implemented in the field of control process, where multi-
objective optimization concepts are applied to a multi-criteria decision situation 
to develop computational methods for adjusting PID Controllers [6]. 

4.1 MAGO 

The Multidynamics Algorithm for Global Optimization (MAGO) is a heuristics 
resulting from the combination of Lagrangian Evolution, Statistical Control, and 
Estimation of Distribution [7]. It does not use genetic operators but is based on 
statistics from the same evolving population. MAGO has only two parameters: 
number of generations and population size. Unlike other EAs, to get a larger 
exploration-exploitation balance and less likelihood to convergence to a local 
optimum, MAGO has three different dynamics for evolving the population. The 
cardinality of each dynamics changes in each generation, according to a rule 
inspired on methods of statistical control. The Emergent Dynamics is composed 
of improved elite which seeks solutions in a neighborhood near the best of all the 
individuals. This subgroup has the function of making faster convergence of the 
algorithm. The Crowd Dynamics is created by sampling from a uniform 
distribution, determined by the upper and lower limits of the second dispersion 
and the mean of the current population. This subgroup seeks possible solutions in 
a neighborhood close to the population mean. The Accidental Dynamics is the 
smaller one but has two basic functions: maintaining the diversity of the 
population, and ensuring numerical stability of the algorithm. Individuals of this 
subgroup are taken as samples from a uniform distribution throughout the 
searching space, similarly as in the initial population. 

4.2 Application of evolutionary techniques 

MAGO handles global evolution strategies, i.e. the use of genetic operators, such 
as crossover, is not raised because they required the analysis of each particular 
individual. MAGO through the three different dynamics produces new 
individuals in each generation. Each dynamics produces a subset of the new 
population. These three subgroups are the Emergent Dynamics made up of the 
Pareto front, Crowd Dynamics, and Accidental Dynamics. Figure 1 illustrates the 
way of determining the amount of individuals for each dynamics. The average of 
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the current generation is a virtual individual calculated on purpose. The 
cardinality of the Emergent Dynamics corresponds to the number of elements 
within one standard deviation of the actual population. The cardinality of Crowd 
Dynamics is the difference between the first and second deviation. The number 
of remaining elements is the cardinality of the Accidental Dynamics. 
     Once the number of individuals within each dynamics is determined, MAGO 
proceeds to create individuals who will make up these groups and continues with 
the evaluation of new models. Figure 2 shows the flowchart for the evolutionary  
 
 
 

 
Figure 1: Cardinality of the dynamics for the generation of new populations. 

 
 
 

 
Figure 2: Flowchart for evolutionary multi-objective systems identification. 
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Figure 3: Software packages general flowchart. 

multi-objective systems identification process. Figure 3 shows the flowchart of 
software packages. Following is the MAGO pseudo code: 
1: j:= 0. 
2: Random initial population with a uniform distribution over the search space. 
3: Repeat. 
4:  Evaluate each individual with the fitness function. 
5:  Calculate the scattering matrix of the population. 
6:  Calculate cardinalities N1, N2, and N3 of the three dynamics G1, G2, and 

G3. 
7:  Select the N1 best individuals, move toward the best of all, make the 

displaced compete with their parents, and choose the best of them to the 
next generation j + 1. 

8:  Sample N2 individuals from a uniform distribution in the hyper rectangle 
[LB (j), UB (j)], and pass to the next generation j + 1. 

9:  Sample N3 individuals with a uniform distribution over the entire search 
space. Pass to the next generation j + 1. 

10: j = j + 1. 
11: Until to satisfy a stopping criterion. 

5 Cases of study 

The proposed method for identification systems was validated with both an 
academic device and an open standard data set. The academic device is the 
microclimate tool developed by National Instruments for academic purposes [8]. 
It consists of a bulb generating heat within an acrylic closed chamber, and also 
has a cooler that creates a constant air flow and a temperature sensor. The system 
is excited with a step of voltage of 3 volts. Through a data acquisition system a 
total of 120000 data with a sampling of 5 msec is obtained. From these, a total of 
80000 data is used to find the best parametric model describing the dynamics of 

Computational Methods and Experimental Measurements XVI  37

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



the system using the algorithm MAGO. The other 40000 are used for validation 
purposes. Figure 4 shows the behavior of the system in time. 
     The data set of an installation that acts as a hair dryer is used as standard case 
of study [9]. Input data to the system is the voltage applied to the air heating 
device. Output data is the air temperature which is measured with a 
thermocouple. Figure 5 shows the hairdryer system behavior in time. 
     Multi-objective optimization and elitism techniques were used for creating 
parametric modeling of systems identification. Based on the criteria FPE, Fit 
Percent and Polynomial Degree a problem of multi-criteria decision is 
formulated. This problem deals with choosing the model presenting the greatest 
percentage of adjustment, the smallest FPE, and minimizing the degree of the 
polynomial. The steps of this algorithm are described below. 
 

 

Figure 4: Microclimate system response (above) to step input of 3 volts 
(below). 

 

Figure 5: Hairdryer system response (above) to voltage steps at the input 
(below). 

5.1 Creating the individual’s matrix 

The size of each population is 30 individuals. The studied models are the models 
OE, ARX, and ARMAX taking a total of 10 models on each structure. The 
parameters to be found are the FPE, the percentage of fit, and the polynomial 
degree of each individual or model. They represent, therefore, the individuals in 
the population within an array MI30x5. Figure 6 shows the array of individuals 
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from the first generation, being in each row the respective degrees of polynomial 
and individual delays.  
     Each row of the matrix MI represents an individual of the population. For 
example in the matrix MI there is the OE model [9 10 7] in the first row, the 
ARX [8 3 2] in the third row, and the ARMAX [5 2 9 2] in the last row. For the 
first generation rows from 1 to 10 represent OE models, rows from 11 to 20 
represent ARX models, and rows from 21 to 30 represent ARMAX models. The 
number of individuals of each type of model changes in each generation but 
remains the total population of 30 individuals in each generation. 
 

𝑴𝑰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝟗 𝟏𝟎 𝟎 𝟎 𝟕
𝟐 𝟒 𝟎 𝟎 𝟏𝟏
⋮ ⋮ ⋮ ⋮ ⋮
𝟎 𝟖 𝟎 𝟑 𝟐
𝟎 𝟏𝟏 𝟎 𝟕 𝟑
⋮ ⋮ ⋮ ⋮ ⋮
𝟏 𝟕 𝟒 𝟎 𝟏
𝟓 𝟐 𝟗 𝟎 𝟐 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Figure 6: Matrix of individuals. 

     After obtaining a population, a model evaluation proceeds. The criteria FPE, 
Percentage of Adjustment, and polynomial degree are used to select the most 
suitable models or individuals to represent the system. 

5.2 Obtaining individual characteristics and coding of features 

The toolbox Ident of Matlab is used to build the models. After deriving the 
models, features used in the EA (FPE, polynomial degree, and percentage of 
adjustment) are extracted. The encoding task is enabled since all values obtained 
with these characteristics are numerical. 
     For the degree of the polynomial, PD, an average among the polynomial 
degree of the structures present in the models considering both the number of 
polynomials and the degree of them is used, see equation (11). 
 

                                          PD = Na+Nb+Nc+Nf+Nk
5

                                                   (11) 
 
where: Na, Nb, Nc, and Nf are the degrees of the polynomials of the model to 
evaluate, and Nk are the lags of the input. 
     Equation (12) shows how the percentage of fit adapts to be used in the 
program: 

𝑃𝐴 = 𝑝𝑎
10

                                                                   (12) 
 

where: pa is the percentage of fit of the model. 
     A specific encoding for the numeric value of the final prediction error FPE is 
not applied, but its value is used directly. 
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5.3 Evaluation of characteristics with the fitness function 

It is considered that a multi-objective optimization problem is mathematically 
solved when a Pareto optimal set has been found. There are three kinds of 
methods to solve a MOP (multi-objective optimization problem), a priori 
methods, a posteriori methods, and interactive methods or progressive [3]. The 
fitness function in equation (13) performs a scaling between the criteria PD and 
PA presented in equations (11) and (12), respectively, and the FPE. 
 

 𝐹𝑓 = (10 − 𝑃𝐴) + 𝑃𝐷 + 𝐹𝑃𝐸      (13) 
 

     Most of the multi-objective optimization problems require as a solution a 
model offering the highest PA, also using the simplest structure and minimizing 
the FPE. Equation (13) presents an easy alternative taking advantage of a priori 
method reducing the system identification problem to a single-objective 
optimization problem. The selection model seeks the equation (13) minimization. 

5.4 Obtaining the Pareto front 

Individuals in the population with the lowest value Ff according to the fitness 
equation (13) are selected. These individuals form the Pareto front and are the 
most suitable models representing the system under study in each generation. 
The model with better characteristics is saved for the next generation, which is 
formed partially by a normal distribution around the best one. Figure 7 shows the 
Pareto front for the first and last generations for the microclimate system. 

 
 
 
 
 
 
 
 

                                    a)                                             b) 

Figure 7: Pareto front for the microclimate system, the circle indicates the 
Pareto front estimated by MAGO. a) First generation, b) last 
generation. 

6 Results 

For the evaluation of the case study a reference analysis was constructed. This 
reference serves to compare the result with MAGO. The reference analysis 
involves a human expert evaluation about what is the most appropriate model to 
experimental data. This analysis was applied only to the micro system. For the 
standard data set there is not offered a model of reference.  
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     According to the expert the best model describing the system is OE [2 2 0] 
with a PA of 85.67% and an FPE of 0.0707. Running the MAGO with 30 
generations, also occurs as a result of the structure OE [2 2 0]. Additional to this, 
the algorithm also records another model as a feasible solution, the structure OE 
[1 2 1] with a PA of 85.66% and an FPE of 0.0707. From the comprehensive 
evaluation of the fitness function this model turns out to be more similar than the 
former. Although the computational effort is low considering the amount of 
analyzed models (around 1500 in 30 generations with a population of 30 
individuals), this effort can be reduced with a proper adjustment of the fitness 
function. Adapting appropriately the acceptable limits of the polynomials 
degrees, it is possible to reach a solution with an evolution in fewer generations. 
Table 1 shows the best model selected in each generation. From generation 20, 
the OE [2 2 0] model remains as the dominant model in all populations until 
generation 30. 

Table 1:  Best individual on each generation for the microclimate system. 

Generation Best model PD PA FPE Ff 
1…2 OE [5 6 1] 2.4 86.34% 0.0820 4.2977 

3 ARX [1 2 1] 0.8 73.89% 0.1539 3.5649 
4 OE [3 3 4] 2 86.34% 0.0985 3.4644 
5 ARX [2 2 1] 1 78.55% 0.0128 3.2735 
6 OE [3 5 1] 1.8 86.34% 0.0846 3.2508 

7…11 OE [4 3 2] 1.8 86.34% 0.0789 3.2447 
12…13 OE [4 3 1] 1.6 86.34% 0.1265 3.0924 
14…15 OE [3 3 1] 1.4 86.34% 0.0746 2.8406 

16 OE [1 4 1] 1.2 86.29% 0.0614 2.6322 
17 OE [1 2 1] 0.8 85.66% 0.0707 2.3047 
18 OE [1 2 1] 0.8 85.66% 0.0707 2.3047 
19 OE [2 2 0] 0.8 85.67% 0.0707 2.3037 

20…30 OE [2 2 0] 0.8 85.67% 0.0707 2.3037 
 
     For the HairDryer system, MAGO works with populations of 60 individuals 
and 30 generations. Results for the hairdryer are presented in Table 2. Best 
solution was obtained as OE model [3 3 0] with a PA of 87.96% and an FPE of 
0.0101.  

7 Conclusions 

With the application of concepts of multi-objective optimization and multi-
criteria decision an evolutionary computation procedure that can create and 
select parametric models for the identification of dynamical systems from a set 
of measured data has been developed. The algorithm MAGO successfully found 
the best model representing the microclimate system, model to which the expert 
had also arrived. Besides the evolutionary process proposed another equivalent 
model also meeting the selection criteria set for the problem under study. 
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Table 2:  Best individual on each generation for the HairDryer system. 

Generation Best model PD PA FPE Ff 
1 ARX [2 3 1] 1.2 67.51% 0.0546 2.6893 

2···6 OE [5 1 0] 1.2 85.33% 0.0150 2.5764 
7···10 OE [2 2 2] 1.2 87.57% 0.0170 2.4538 

11 OE [3 2 1] 1.2 87.62% 0.0106 2.4489 
12···13 OE [3 2 1] 1.2 87.62% 0.0106 2.4489 

14 OE [2 3 1] 1.2 87.81% 0.0103 2.4293 
15 OE [3 3 0] 1.2 87.96% 0.0101 2.4293 

16···30 OE [3 3 0] 1.2 87.96% 0.0101 2.4142 
 

     Because the algorithm must apply statistical methods to calculate models in 
each generation this may have a high computational effort when large samples 
are taken into account. As future work the design of a module to conduct a pre-
processing of information which decides the structures that are most appropriate 
for the system under study is considered. With these candidates structures the 
initial population could be randomly generated in order to reduce the processing 
time. 
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