
An algorithm for the calibration of running 
time calculation on the basis of GPS data 

S. de Fabris, G. Longo & G. Medeossi 
Dept. of Civil and Environmental Engineering, University of Trieste, Italy 

Abstract 

Increasing the precision in timetable planning is a key success factor for all 
infrastructure managers, since it allows us to minimize delay propagation 
without reducing usable capacity. Since most running time calculation models 
are based on standard and deterministic parameters an imprecision is implicitly 
included, which has to be compensated by running time supplements.  
     At the same time, GPS or even more precise trackings are continuously stored 
in the event recorders of most European trains. Unfortunately, this large amount 
of data is normally stored but not used except for failure and maintenance 
management. 
     To consider real running time variability in running time calculation, an 
approach has been developed, which allows us to calibrate a performance factor 
for each motion phase.  
     Given the standard motion equation of a train, and a mesoscopic model of the 
line, the tool uses a simulated annealing optimisation algorithm to find the best 
regression between calculated and measured instant speed. To increase precision, 
the motion is divided into four phases: acceleration, braking at stops, braking for 
speed reductions/signals and cruising. By performing the procedure over a 
number of train runnings, a distribution of each performance parameter is 
obtained. Once the infrastructure model is defined and the trackings are 
imported, the procedure is completely automated. 
     The approach can be used in both stochastic simulation models and as a basis 
for advanced timetable planning tools, where stochastic instead of deterministic 
running times are used. The tool has been tested in the north-eastern part of Italy 
as input for both running time calculation and microscopic simulation. 
Keywords:  railway simulation, railway planning, GPS, train performance, 
calibration. 
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1 Introduction 

Increasing the precision in timetable planning is a key success factor for all 
infrastructure managers, since it allows us to minimize delay propagation 
without reducing usable capacity. When setting up a timetable, it is necessary to 
estimate running times for different rolling stock using the current infrastructure. 
Conventional running time calculators solve the motion equation, which is based 
on a number of empirical parameters. Such parameters have been measured for 
years for different kinds of rolling stock [1]; therefore it is possible to calculate 
train speed profile in high detail. However, many influences on running times are 
not deterministic, such as human behaviour, weather conditions and even 
different trains of the same series could show different performances. To cope 
with this variability, recovery times are inserted, implicitly including an 
imprecision in the representation of train motion.  
     While a deterministic running time calculation is sufficient to plan timetables, 
which of course must be deterministic, a more detailed representation is required 
in micro-simulation and for ex-ante evaluate timetable robustness estimations, 
which aim at reproducing train behaviour with highest detail. 
     A performance factor, which introduces a stochastic element in the motion 
equation, has been proposed by some authors and inserted in proven simulation 
tools. This factor in multiplied by the tractive effort, the speed limit and the 
braking deceleration during acceleration, cruising and braking respectively. 
     To estimate the distributions of such parameters, an iterative approach was 
proposed by the Authors [3]. A software tool which allowed us to compare on-
board collected data and running time calculation was developed from scratch 
and tested on a line in Northern Italy, demonstrating the benefits of calibrated 
motion equation in stochastic micro-simulation.  
     The results appeared very promising, although calibration of motion equation 
was performed manually by the user, graphically comparing simulated and real 
speed profiles at given points. 
     To overcome this weakness, and to allow a more precise calibration based on 
a higher number of records, a new software tool has been developed, which 
allows an automatic calibration of performance factors. 

2 Approach and software tool 

The proposed method includes a number of steps that are required to prepare 
data sets, filter the on-board collected data, calculate running time using 
deterministic motion equations and then calibrate them. All steps and data are 
included in a single tool to avoid exporting and importing data from in different 
software, reducing the number of steps performed by the user. 
     The software tool has been developed using Java programming language in 
order to use on different operating systems without compatibility problems, 
while the Netbeans IDE development environment was chosen for the simple 
windows drawing procedure and the good built-in debugging and profiling 
features.  
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     The tool integrates a microscopic infrastructure model, rolling stock and 
timetable data to calculate running times. Real world data are filtered and then 
imported. A simulated annealing algorithm is used to calibrate the performance 
factor over a number of records. The distributions of performance factors are 
then presented and stored, to be used in the tool or exported to other simulation 
software supporting stochastic performance factors. The working flow of the 
approach is shown in Figure 1. 
 

 
 

Figure 1: Block diagram of the working flow and software tool. 

2.1 Microscopic infrastructure model 

The infrastructure, rolling stock and timetables are stored in a PostgreSQL 
database. Compared to binary files, the database allows a simpler data model, 
higher exchangeability with other tools, and a smarter management of large 
amounts of data. Moreover, PostgreSQL represents a freeware, yet performing 
and reliable alternative to commercial DBMS. Infrastructure is represented 
according to the RailML standard [5], allowing a simple import and export from 
the most common simulation tools. The well-known and proven double-vertex 
graph [6] is used simplify the definition of itineraries.  
     A microscopic infrastructure model has been chosen rather than a mesoscopic 
one, which is sufficient for running time calculation, because not only line speed, 
but also signal aspects and the supervision curve of the protection systems are 
considered. To achieve the highest precision in the calibration process, the speed 
profile has to be calculated precisely for the entire train route: therefore the 
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itineraries within station and the position (and aspects) of each signal are 
required.  
     Also timetable data structure is entirely RailML compatible, while rolling 
stock is defined using all parameters required to solve the motion equation and 
consider the Italian ATP and ATC (SSC, SCMT, RSC, ETCS L2).  

2.2 Data filtering and import 

The calibration of motion equation can be performed on the basis of on-board 
collected GPS tracking or on the archives of digital train event recorders. Train 
event recorders store very accurate data based on odometers; endowed with a 
wider range of other data, such as the speed limit calculated by the protection 
system, the signal aspects the throttle and brake percentage use. These files do 
not require any filtering process, since tracking data are filtered in real time 
comparing two odometers and using balises or a discrete calibration of distances.  
     Significantly more complex to perform is the preparation of GPS data. 
Trackings are first post-processed using a proven algorithm based on the Kalman 
filter already in use to reconstruct the trajectories of race cars [8]. The filtered 
data show a sufficient precision, but do not contain any information on signal 
aspects, which is required in order to reconstruct the drivers’ behaviour. To fill 
this gap, the recorded speed profile is compared to the planned one (which 
considers no route conflict), in which the train brakes only for speed reductions 
and at stops.  
     Once unplanned brakings are found, the planned profile is recalculated, 
considering a yellow aspect at the corresponding signal. On lines with discrete 
ATPs, the braking curve comprehending the approach speed and distance at next 
signal is computed, since the train is not allowed to re-accelerate before passing 
the corresponding main signal balise. On lines equipped with continuous ATP, 
where the train is allowed to accelerate as the man-machine interface shows the 
green aspect again, the instant when the train re-accelerates is obtained as local 
minimum of the real speed profile. The planned speed profile is then modified 
considering braking and then re-accelerating. The weakness of this method is 
represented by the impossibility to know exactly whether an unplanned braking 
is due to a “normal” traffic conflict, or to a failure, where the protection system 
activated the emergency braking.  
     GPS trackings, filtered and endowed with the corresponding signal aspects, 
and train event recordings are saved and used as basis for the calibration 
procedure. 

2.3 Performance factors and motion phase 

As stated in [3] a single performance factor does not allow a precise 
representation of the different motion phases. Separated parameters for 
acceleration, cruising and braking phases where suggested and used in the test 
case. 
     Knowing the signal aspects and the planned timetable it is possible to separate 
braking into three different phases: braking at a halt, for a line speed reduction 
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and for a restrictive signal aspect. This separation has been decided after a first 
analysis of real braking curves, which appeared significantly different depending 
on the motivation of braking. Braking at halts showed lower deceleration 
compared to braking for signals, and even lower values were recorded at speed 
limit changes. Moreover, especially when heavy trains brake at a speed reduction 
often run even lower speeds than allowed or show very variable deceleration to 
avoid this excessive braking.  
     As a result, compared to conventional running time calculation, where the 
braking distance is continuously calculated and stored, three values are 
computed.  

2.4 Calibration algorithm 

During calibration, the best fitting set of performance factors for a train ride is 
calculated. This computation is based on three assumptions: 

1)    The infrastructure model represents exactly the infrastructure used by 
the train, in particular concerning signal positions, relative distances and 
speed limits. 

2)   At the end of calibration, calculated running time correspond exactly to 
the measured one. In other words, the set of performance factor must 
lead to an exact calculation of the running time at the end of the 
journey. 

3)    The integration period in running time calculation must correspond to 
the tracking sampling period. This simplifies the calibration 
significantly, since to each recorded value corresponds to a calculated 
one, permitting a simple comparison in order to obtain an indicator of 
the goodness of the estimated parameters. 

     The method used to compare the two arrays is the simple mean squared error 
estimator. The software tool implements the algorithm (1) 

 MSE (vGPS (t)  vC (t))2

t1

N


 

(1) 

 
To compute a fixed length speed vector one dependent variable and four 
independent variables have to be considered. The software tool uses cruising 
performance as dependent variable for three reasons: 

1) It has a small variation and relative high value (always higher than 90% in 
the test case) 

2) Cruising running phase is the longest during a train run, therefore a  
minimum variation of its value has a great impact on total train running 
time 

3) The value of cruising performance is inversely proportional to train 
running time. 

Assuming 3), the value of the dependant variable value can be found using the 
bisection method. 
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2.5 Simulated annealing 

In order to find the best performance parameters, an optimisation can be 
performed. It is necessary to find the minimum mean square error given four 
independent variables of a not linear function resolving the equation (2). 
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     In the equation a,b,c,d,e are the five performance parameters, vc is the arrays 
of the calculated speeds and vGPS is the array of measured speeds. 
     This appears as a nonlinear optimization problem: an adequate method to 
solve it has to be found; moreover, since it is difficult to determine a priori the 
properties of the target function a robust method must be used. A number of 
proven algorithms to perform this computation can be found in literature. 
     In the first tests, using only one parameter for breaking performance, the map 
represented in figure 2 has been obtained. It represents the value of target 
function (z-axis) with the variation of acceleration and braking factors. 
Obviously the value of cruising performance is not represented because it 
depends on the other two values. It’s possible to notice the optimum value point 
for this train run. 
     The simulated annealing (SA) optimization method [9] is used in the software 
tool to find the best performance parameters that reduce the difference between 
computed and measured train speed. The algorithm begins finding a solution at a 
random point of the feasible region; after that, many steps are performed in order 
to find a better solution. It is possible to limit the maximum number of steps to 
be performed in order to limit computation time. 

 

Figure 2: Target function (z-axis) as a function of acceleration and braking 
factors. 
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     Each step of the SA algorithm replaces the current solution by a random 
“nearby” solution, chosen with a probability that depends on the difference 
between the corresponding function values and on a global parameter T (called 
the temperature), that is gradually decreased during the process. The dependency 
is such that the current solution changes almost randomly when T is large, but 
increasingly “downhill” as T goes to zero. The allowance for “uphill” moves 
saves the method from becoming stuck at local optima. 
     At the end of the optimization process both performance parameters are saved 
into a custom file format in order to perform aggregate data analysis. In the same 
files, the corresponding occupation steps are stored, to enable a precise 
representation of the real infrastructure usage.  

2.6 Multithreading  

Simulated annealing algorithm performs a number of experiments looking for 
value of target function in several points. Since each experiment is a train 
running time calculation with different performance parameters independent 
from each other, it’s possible to run them concurrently using modern processors 
multithreading processing capacity. This permits to reduce total computation 
time, allowing us to use nearly 100% of the CPU power of modern 
multiprocessor workstations. The experiments to be computed are inserted in a 
queue, so each thread gets one experiment input data from the queue, computes 
the value of the target function, compares it with the best value ever found 
before, generates up to 8 new experiments and adds them in the queue. 
Synchronization between threads is needed only when accessing the queue to 
add and remove experiment input data and accessing best target function value. 
The synchronized code is less than 0.1% of total code lines of the optimization 
phase. 

3 Test and applications 

The tool has been tested in North-Eastern Italy, on the Trieste – Venice line. The 
double track, electrified line is about 130 km long and plays an important role in 
regional transport and as freight corridor between Eastern Europe and Italy. The 
line is endowed with SCMT, digital, discrete ATP corresponding to ETCS 
Level 1. About 100 train runs with the same rolling stock have been computed, 
obtaining the corresponding parameters sets. Each set represents a driving style, 
since it contains the way a driver handles in each motion phase.  
     Comparing the calibrated equation with 5 parameters with the conventional 
running time calculation, including 7% running time supplement, the difference 
between the two approaches has been pointed out, showing differences of more 
than 20% in the expected occupation steps. 
     In Figure 2, the speed limit (black), the planned speed profile (red) the real 
(green) and the calibrated (purple) ones are compared, clearly showing the 
differences among them. In particular, the goodness of the fitted equation 
compared to the planned one is remarkable. 
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Figure 3: Speed limit, simulated speed profile with 100% performance, 
calibrated and real speed profiles. 

3.1 Future applications 

The obtained driving styles (calibration sets) over a statistically significant 
number of records can be used to compute the stochastic behaviour of a single 
train or a calibrated simulation of the interactions among trains. The second 
option would lead to a precise micro-simulation that could be either 
asynchronous or synchronous.  
     In the first option a representation of the blocking times over a number of 
realistic operational days are obtained, as tested on the Trieste-Venice line. The 
resulting blocking times can be stored and depicted in a timetable graph using 
transparencies to represent each run. As a result, a wider occupation staircase is 
obtained, which colour intensity is proportional to the probability to have the 
infrastructure used. While planning a timetable, the possibility to view the 
realistic infrastructure usage supports the definition of buffer times, which can be 
chosen on the basis of the real variability instead of empiric rules.  

4 Conclusions and outlook 

In this work, an approach for thee accurate calibration of motion equation, which 
introduces a quantitative representation of real driving styles has been presented. 
The method has been implemented on a software tool, using standard 
representation of input data and taking advantage of powerful DBMS and 
multithreading to perform onerous computations in a competitive time. 
     The case study has shown a significant improvement in the stochastic micro 
simulation output, demonstrating the importance of a precise parameter 
calibration especially regarding train braking and acceleration. A further 

584  Computational Methods and Experimental Measurements XV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press



improvement will come from the calibration of the motion equation parameters 
to fit the DIS data. 
     The approach appears very useful for the calibration of motion equation 
within micro-simulation tools, while a promising application is represented by 
the implementation of stochastic blocking time staircases instead of deterministic 
ones in timetable planning software. 
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