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Abstract 

Inelastic response of elliptical plates to impact and initial impulsive loading is 
studied. For determination of the deflected shape of plates the concept of mode 
form motions amalgamated with the conical velocity field in used. Theoretical 
predictions of residual deflections are developed for plates of piece wise constant 
thickness. The cases of circular and annular plates subjected to initial impulsive 
loading are studied as particular cases of an elliptical plate. 
Keywords:  impulsive loading, plasticity, plate, elliptical plate, mises condition. 

1 Introduction 

Thin plates and shells are important elements of structures. In accidental 
situations the plates can be subjected to impact and shock loadings. This involves 
the need for methods of evaluation of maximal residual deflections caused by 
initial impact and impulsive loading. 
     Exact and approximate theoretical predictions and experimental results 
regarding to the behaviour of inelastic structures have been presented by several 
authors. Reviews of these studies can be found in the books by Jones [2], 
Kaliszky [5], Stronge and Yu [17], also in papers by Kaliszky [4], Jones [3], 
Kaliszky and Logo [6], Nurick and Martin [12], Yu and Chen [21]. Shen and 
Jones [15], also Wen et al. [20] studied the dynamic plastic response of fully 
clamped circular plates in the cases of rate sensitive and rate insensitive 
materials. Liu and Stronge [11] considered simply supported circular plates 
subjected to dynamic pressure at the central part of the plate. Wang et al. [19] 
used the concept of the unified strength theory in the dynamic plastic analysis. 
Lellep and Hein [7], Lellep and Mürk [8, 9] studied stepped plates and shallow 
shells. In papers [10, 9] the concept of plates with stable cracks located of the re-
entrant corners of steps was used for determination of optimal parameters of the 
plate. 
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     Approximate methods of determination of residual displacement fields have 
been suggested by Jones [2], Symonds [18], Kaliszky [4] and others. Theoretical 
predictions obtained for axisymmetric and rectangular plates are in good 
agreement with experimental data [2]. It is somewhat surprising that only a little 
attention is paid to non-axisymmetric problems, excluding the case of 
rectangular plates. 
     In the present paper an attempt is made to evaluate residual deflections of 
stepped elliptical plates subjected to impulsive and impact loading. 

2 Formulation of the problem and governing equations 

Consider a thin walled plate of variable thickness  ,rhh  . Here ,r  stand 

for polar coordinates, which are related to Cartesians as  
 

  sin,cos ryrx  . (1) 

 
Let the boundary of the midplane of the plate be an ellipse (fig. 1) 
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where a and b are given constants.  
     Substituting eqn. (1) to eqn. (2) one obtains the equation of the plate 
boundary as  rr  where 
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Figure 1: An elliptical plate. 
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     The plates under consideration have piece wise constant thickness or the 
thickness can be approximated with a stepped distribution, e.g. jhh   for 

      1,  jj rrr  where nj ,...,0  and consthj  . The curves  jrr   are 

assumed to be given closed smooth curves. 
     We assume that the plate under subjected to initial impulsive loading and that 
the initial kinetic energy 0K  of the plate is given. The subsequent motion is due 

to inertia only so that initial kinetic energy will finally be absorbed in the plastic 
work. As regards the distribution of the initial velocity we assume that it is 
unidentified. However, it is expected that it can be approximated with a conical 
distribution which has its apex at a given point. The vertical projection of the 
apex on the middle plane of the plate is taken the origin of polar coordinates r  
and  . 
     Material of the plate is assumed to be an ideal rigid-plastic one obeying von 
Mises yield condition. 
     The aim of the paper is to develop approximate theoretical predictions of 
residual deflections for plates of elliptical shape subjected to impact loading. For 
evaluation of residual deflections the method of mode form motions will be 
employed. 
     Von Mises yield condition can be presented in the form 0  where (see 
Chakrabarty [1])  
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     In eqn. (4) M1. M2 are the bending moments with respect to axes Ox and Oy, 
respectively, M12 is the shear moment on the xy-plane whereas M0 stands for the 

yield moment. In the case of a solid plate 4/4
00 hM  ; h being the thickness of 

the plate and σ0 – the yield stress of the material. 
     According to the associated flow law one has    
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where   is a non-negative scalar multiplier and  
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     Making use of eqns. (6) one can present the power of the plastic dissipation 
per unit area of the middle surface as 
 

 12122211   MMMdi   (7) 
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     The total internal energy rate is   
 


S

ii dSdD  , 

 

where S stands for the area of the ellipse. 
     For determination of residual deflections an approximate method suggested 
by Jones [2, 3] will be used. According to this method the rate of the work done 
by inertial forces is equalized to the internal energy dissipated in continuous 
deformation fields and on discontinuous hinge lines. This method is combined 
with the concept of mode form motions. Thus the foregoing analysis is based on 
the equality (Jones [2]) 
 

ei AD   , (8) 
 

where eA  is the power of external forces. Note that the work done by inertial 

forces is included in eA . 

3 Determination of residual deflections 

Consider a stepped elliptical plate simply supported at the boundary. The 
boundary may be defined with the equation  
 

   rr , 
 

where  r  is specified with eqn. (3). According to the latter we can write  
 

       ,,, 0 rftWtrW   , (9) 
 

where W  is the transverse deflection and 0W  stands for the deflection rate at a 

specific point. Here dots denote time derivatives. As the particular case of eqn. 
(9) one can take  
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for plates simply supported at their boundaries at   rr .  

     The internal energy dissipation corresponding to the velocity field (9), (10) 
can be calculated as  
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where the simplifications suggested in [2] are taken into account. In eqn. (11) 

jM0  stands for the yield moment for the plate with thickness jh  and ij  is the 

slope discontinuity at the hinge line located at i   in the region 

 1,  jj rrr . Evidently 
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     However, in the case of a continuous field of straight yield lines, called yield 
fan, it is judicious to calculate the internal energy dissipation according to eqn. 
(7). Making use of eqns. (5)-(7) and eqn. (10) one obtains 
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for ),( 1 jj rrr ; nj ,...,0 . 

     In eqn. (12) and henceforth primes denote the differation with respect to the 
polar angle θ. Note that that the relation (12) can be reached by different ways 
(Skrszypek and Hetnarski [16]; Sawczuk and Sokol-Supel [14]; Ržanitsyn [13]). 
Since the middle plane of the elliptical plate covers the area 

 20,0  rr  and rdrddS   it follows from eqn. (12) that 
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Thus the internal energy dissipation can be presented as 
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     The external work rate done by inertial forces can be calculated as  
 

 
S

e dSWWA   , (14) 

 
where   stands for the density of the material. Calculating accelerations from 

eqns. (9)-(10) and substituting in eqn. (14) yields 
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where 0W  and 0W  are functions of t  only. Implementing integration in 

eqn. (15) gives 
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for nj ,..,0 . 

     Making use of eqns. (13)-(17) one can determine  
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     In the particular case of the plate of constant thickness 0hh   one has  
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where 0M  is the yield moment for the plate with thickness 0h . 

     Making use of eqn. (3) one can easily calculate derivatives 
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and integrals 
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     Substituting eqn. (21) in eqn. (19) leads to the simple expression 
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     Evidently, if a=b=R then eqn. (22) presents the acceleration for a circular 
plate of radius R. 

     It can be easily seen from eqns. (18), (19) that constW 0
 . Integrating twice 

with respect to time under initial conditions 
 

   00 0 VW  ,   00 0 VW   (23) 

 
one obtains 
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     The motion of the plate stops at 1tt   when   010 tW . From eqns. (24) and 

(25) one easily obtains that 
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     The initial kinetic energy corresponding to the velocity field (9), (10) can be 
evaluated as 
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where jhh   for  1,  jj rrr ; nj ,..,0  and   00 0 VW  . From eqn. (27) one 

can define  
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     Making use of eqns. (26)-(28) one obtains the maximal residual deflection 
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4 Discussion  

The accuracy of the approximate approach suggested in the present paper is 
evaluated in the particular case of a circular plate in fig. 2. Note that the present 
method is accommodated for the case of a Tresca material. In fig. 2 maximal 
permanent deflections of a circular plate simply supported at the edge versus the 
impulse are presented. The highest curve 1 in fig. 2 corresponds to the exact 
solution for a circular plate made of a Tresca material and subjected to impulsive 
loading [2], whereas the curve labeled with triangles is obtained in the present 
study. Intermediate curves in fig. 2 are obtained for different values of the 
parameter   in the case of a rectangular pressure pulse. In this case following 

notation is used 
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Here 0p  is the load intensity, cp  stands for the static load carrying capacity and 

 is the time instant when the loading is removed.  
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Figure 2: Maximal permanent deflections of a circular plate. 

     It can be seen from fig. 2 that in the case of a circular plate the method used in 
the present study in the case of impulsive loading leads to the results which are 
comparable to those corresponding to a rectangular impulse of medium value.  
     Maximal residual deflections versus 1  are presented in fig. 3. It is assumed 

herein that the step is located at the ellipse with the semiaxes aa 11  and 

bb 11  , e.g.  rr 11  . Here and henceforth 
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     Different curves in figs. 3, 4 correspond to different values of 01 / hh . To 

lowest curve (straight line) in fig. 3 corresponds to elliptical plates of constant 
thickness. It can be seen from fig. 3 that the maximal permanent deflections 
monotonically decrease when the step radius 1r (or the semiaxis 1a ) increases. 

     In fig. 4 similar results are presented for elliptical plates with cutouts. The 
lines of cutouts are assumed to be ellipses with semiaxis aa 00   and 

bb 00  , provided a, b are the parameters of external boundary of the plate and 

2.00  . In the case of plates with cutouts 1W  presents the residual deflection 

at the internal boundary of the plate. 
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Figure 3: Maximal permanent deflections of an elliptical plate. 

 

Figure 4: Maximal deflections of a plate with cutout. 
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5 Concluding remarks 

Dynamic plastic response of elliptical plates to impulsive and impact loading 
was considered. An approximate method for evaluation of residual deflections of 
plates with elliptical boundaries has been developed. The method can be easily 
extended for stepped plates of arbitrary shape with arbitrary number of steps. 
Calculations carried out in the case of elliptical plates showed that maximal 
residual deflections can be remarkably shortened under given weight when re-
distributing the material in the plate. 
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