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Abstract 

This paper analyses heat transfer across multilayer systems when boundary 
conditions are unsteady. The results of analytical simulations and experimental 
tests were compared in order to validate the analytical formulation. The 
formulation that is proposed to solve this problem uses Green’s functions to 
handle the conduction phenomena. The Green’s functions are established by 
imposing the continuity of temperatures and heat fluxes at the interfaces of the 
various layers. The technique used to deal with the unsteady state conditions 
consists of first computing the solution in the frequency domain (after the 
application of time and spatial Fourier transforms along the two horizontal 
directions), and then applying (fast) inverse Fourier transforms into space-time. 
The thermal properties of the multilayer system materials have been previously 
defined experimentally. 
     For the experimental measurements the multilayer system was mounted on a 
guarded hotplate capable of imposing a controlled heat variation at the top and 
bottom boundaries of the system. Temperatures were recorded using a 
thermocouple set connected to a data logger system. Comparison of the results 
showed that the analytical solutions agree with the experimental ones. 
Keywords: experimental validation, transient heat conduction, Green’s functions 
formulation, frequency domain. 
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1 Introduction 

A dwelling’s interior comfort is a fundamental issue in building physics and it 
depends on the building’s envelope. In order to better evaluate the thermal 
performance of the construction elements used throughout the building envelope, 
more accurate models must be developed. Thermal behaviour depends largely on 
unsteady state conditions, and so the formulations for studying those systems 
should take the transient heat phenomena into consideration. 
     Most schemes devised to solve transient diffusion heat problems have either 
been formulated in the time domain (time-marching approach) (e.g. Chang et 
al. [1]) or else use Laplace transforms (e.g. Rizzo and Shippy [2]). An alternative 
approach is to apply a Fourier transform to deal with the time variable of the 
diffusion equation, thereby establishing a frequency domain technique, and then 
obtain time solutions are obtained by using inverse Fourier transforms into 
space-time (e.g. Tadeu and Simões [3]). 
     In general, multilayer systems, built by overlapping different layers of 
materials, are used to ensure that several functional building requirements, such 
as hygrothermal and acoustic comfort, are met. One of the requirements is to get 
high thermal performance and thus reduce energy consumption and promote 
building sustainability. The importance of multilayer solutions has motivated 
some researchers to try and understand the heat transfer in those systems 
(e.g. Kaşka and Yumrutaş [4], Chen et al. [5] and Sami A. Al-Sanea [6]). 
     In this paper is presented an experimental validation of a semi-analytical 
Green’s functions solution that simulates heat conduction through multilayer 
systems when they are subjected to heat generated by transient sources. The 
proposed semi-analytical solutions allow the heat field inside a layered medium 
to be computed, without having to discretize the interior domain. The problem is 
formulated in the frequency domain using time Fourier transforms. The 
technique requires knowing the Green’s functions for the case of a spatially 
sinusoidal, harmonic heat line source placed in an unbounded medium. The 
Green’s functions for a layered formation are formulated as the sum of the heat 
source terms equal to those in the full-space and the surface terms required to 
satisfy the boundary conditions at the interfaces, i.e. continuity of temperatures 
and normal fluxes between layers. The total heat field is found by adding the 
heat source terms equal to those in the unbounded space to the set of surface 
terms arising within each layer and at each interface (e.g. Tadeu and Simões [3]). 
     The experimental results were obtained for several systems built by 
overlapping different materials. These test specimens were subjected to a 
transient heat flow produced by cooling and heating units which established a 
heat flow rate that could reach a pre-programmed mean test temperature in the 
specimen. The temperature changes in the different specimen layers were 
recorded by a thermocouple data logger system. The thermal properties of the 
different materials, such as thermal conductivity, mass density and specific heat 
were obtained experimentally. The temperature variation in the top and bottom 
surfaces of the multilayer system was used as an input for the semi-analytical 
model designed using the thermal properties obtained experimentally.  This 
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paper first formulates the three-dimensional problem and presents the Green’s 
function in the frequency domain for a heat point source applied to a multilayer 
formation. A brief description of the mathematical manipulation follows, and the 
experimental setup is then described. Some final remarks are presented after the 
experimental measurements have been compared with computational results. 

2 Problem formulation 

Consider a system built from a set of m plane layers of infinite extent bounded 
by two flat, semi-infinite media, as shown in Figure 1. The top semi-infinite 
medium is called medium 0, and the bottom semi-infinite medium is assumed to 
be m+1. The thermal material properties and thickness of the various layers may 
differ.  This system is subjected to a point heat source somewhere in the domain. 

 

 
 

Figure 1: Multilayer system bounded by two semi-infinite media. 

     The transient heat transfer by conduction in each layer is expressed by the 
equation 

 

2 2 2

2 2 2

( , , , )
( , , , )j j j

T t x y z
k T t x y z c

tx y z


    
        

,  (1)

 
in which t  is time, ( , , , )T t x y z  is temperature, j  identifies the layer number, 

jk  is the thermal conductivity, j  is the mass density and jc  is the specific 

heat.  

3 Semi-analytical solutions 

The solution is defined in the frequency domain as the superposition of plane 
heat sources. This is done after applying a Fourier transform in the time domain 

 

Medium 1 

Y 

X

1h  

Medium m+1 

Medium 0 

Interface 1 

Interface m+1 

Medium 2 

Medium m 

Interface 2 

Interface m 
mh  

Computational Methods and Experimental Measurements XV  245

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press



and a double Fourier transformation in the space domain along the x  and z  
directions.  
     Applying a Fourier transformation in the time domain to eqn (1) gives 
equation  

 

2
2 2 2

2 2 2

i ˆ( , , , ) 0
j

T x y z
Kx y z

 
                      

, (2)

 

where i 1  ,  j j j jK k c  is the thermal diffusivity of the layer j  , and 

  is the frequency. For a heat point source applied at  0 0, ,0x y  in an 

unbounded medium, of the form

         i
0 0, , , , t

incT x y z t x x y y z e      
, where  0x x  ,  0y y   

and  z  are Dirac-delta functions, the fundamental solution of eqn (2) can be 

expressed as 
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. (3) 

Applying a Fourier transformation in the z direction leads to the solution 
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where  0H  are Hankel functions of the second kind and order 0 , and

   2 2
0 0 0r x x y y    . 

     The full three-dimensional solution is then found by applying an inverse 
Fourier transform in the zk  domain. This inverse Fourier transformation can be 

expressed as a discrete summation if we assume the existence of virtual sources, 
equally spaced at zL , along z, which enables the solution to be obtained by 

solving a limited number of two-dimensional problems, 
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, (5)  

with zmk  being the axial wavenumber given by 
2

zm
z

k m
L


 . The distance zL  

chosen must be big enough to prevent spatial contamination from the virtual 
sources. Eqn (5) can be further manipulated and written as a continuous 
superposition of heat plane phenomena, 
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where 2 2i
j z x

j

k k
K

      and  Im 0j  , and the integration is performed 

with respect to the horizontal wave number ( xk ) along the x  direction.  

     Assuming the existence of an infinite number of virtual sources, we can 
discretize these continuous integrals. The integral in the above equation can be 
transformed into a summation if an infinite number of such sources are 
distributed along the x  direction, spaced at equal intervals xL . The equation can 

then be written as 
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where  0
i

2j
j x

E
k L


 , i nj y

jE e  ,  i x nk x
dE e , 2 2i

nj z xn
j

k k
K

       

and  Im 0nj  , and 
2

xn
x

k n
L


 , which can in turn be approximated by a finite 

sum of equations ( N ). Note that 0zk   is the two-dimensional example. 

     The total heat field is achieved by adding the heat source terms, equal to those 
in the unbounded space, to the sets of surface terms arising within each layer and 
at each interface, that are required to satisfy the boundary conditions at the 
interfaces, i.e. continuity of temperatures and normal fluxes between layers. 
     For the layer j , the heat surface terms on the upper and lower interfaces can 

be expressed as  
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layer l . The heat surface terms produced at interfaces 1 and m+1, which govern 
the heat that propagates through the top and bottom semi-infinite media, are 
respectively expressed by  
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     A system of 2(m+1) equations is derived, ensuring the continuity of 
temperatures and heat fluxes along the m+1 interfaces between layers. Each 
equation takes into account the contribution of the surface terms and the 
involvement of the incident field. All the terms are organized according to the 
form Fa b . When the heat source is placed in medium 1, the following system 

of equations is obtained 
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  (12) 

     The resolution of the system gives the amplitude of the surface terms at each 
interface. The temperature field for each layer formation is found by adding 
these surface terms to the contribution of the incident field, which leads to the 
following equations: 
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bottom semi-infinite medium (medium 1m  ) 
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 (16)

 
     Note that when the position of the heat source is changed, the matrix F  

remains the same, while the independent terms of b  are different. As the 

equations can be easily manipulated to consider another position for the source, 
they are not included here. 

4 Experimental validation 

4.1 Specimen description 

The multilayer systems were built by overlapping 500x500 mm2layers of 
different current insulating materials: natural cork (NC), molded expanded 
polystyrene (EPS) and medium-density fibreboard (MDF).   
     Each multilayer system was composed of 4 layers. One homogeneous 
(System 1) and two heterogeneous (Systems 2-3) systems were prepared.  
System 1 is composed of four NC layers (20.63mm, 20.68mm, 20.52mm and 
20.60mm thickness). System 2 was prepared with these four layers: EPS 
(18.84mm), MDF (19.65mm), NC (20.60mm) and EPS (19.86). System 3 had 
the following four layers: NC (20.52mm), EPS (18.84mm), MDF (19.65mm) and 
NC (20.60mm). Each material used was tested to determine its thermal 
conductivity, mass density and specific heat. The thermal conductivity was 
found by means of the Guarded hot-plate method (ISO 8302:1991 [7]) using the 
EP-500 Lambda-meter from Lambda-Mebtechnik GmbH Dresden, a single-
specimen model. The test procedure defined in EN 12667:2001[8] was used. The 
mass density was determined using the procedure described in EN 1602:1996[9]. 
The specific heat was obtained using a Netzsch apparatus, model DSC200F3, 
following the ratio method.  
     Table 1 gives the averages of those properties for the three materials used in 
the experiments. 

Table 1: Thermal properties of the materials. 

Material 
Conductivity, k

-1 -1(W.m .ºC )  

Mass density, 
-3(kg.m )  

Specific heat, c
-1 -1( J.kg .ºC )  

Natural Cork 0.046 130.0 1638.0 

Molded Expanded Polystyrene 0.041 14.3 1430.0 

Medium-Density Fiberboard 0.120 712 1550.0 
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4.2 Experimental procedure 

The experiments required imposing an unsteady heat flow rate on each 
multilayer system using the single-specimen EP-500 Lambda-meter apparatus. 
Before running any test, the specimens were conditioned in a climatic chamber, 
Fotoclima 300EC10 from Aralab, in a controlled environment with a set-point 
temperature of (232)ºC and (505)% relative humidity, until constant mass was 
reached. 
     The tests were carried out in a controlled laboratory environment 
(temperature (232)ºC and relative humidity (505)%). The single-specimen 
Lambda-meter EP-500was first programmed to reach a mean temperature of 
23ºC in the test specimen, establishing a 15º temperature difference between the 
heating and the cooling units. So, during the test, the temperature of the top 
multilayer surface (in contact with the heating plate unit) increased, while the 
temperature of the bottom multilayer surface (in contact with the lower plate) 
decreased. The energy input was maintained until a permanent heat flow rate was 
reached, that is, when there were no temperature variations at the multilayer 
interfaces. The system was then allowed to cool until the initial temperatures 
were reached again.  
     The temperature variation at each interface layer was measured using type T 
(copper) thermocouples made of 0.2 mm diameter wire. Three thermocouples 
were placed at each system interface, including the top and bottom surfaces, 
which were in contact with the heating and cooling plates (see Figure 2).  The 
data were recorded by a Yokogawa MW 100 data logger, with a time interval of 
10 seconds. 
 

 

Figure 2: Thermocouple positions. 

5 Results and discussion 

In this section the experimental measurements are compared with the semi-
analytical results. The semi-analytical solutions are obtained using the 
formulation presented in section 3, after they have been manipulated to simulate 
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the heat transfer through the multilayer systems where the temperature variations 
are prescribed for the top and bottom surfaces. The materials’ thermal properties 
(see Table 1) were used in these simulations.  

5.1 Semi-analytical model 

Equations (8) and (9) are manipulated by removing the media 0 and m+1 and by 
imposing temperatures 0tt and 0bt  on the external top and bottom surfaces 

(interfaces 1 and m+1). Temperatures 0tt and 0bt are obtained by applying a 

Fourier transformation in the time domain to the temperatures recorded at the 
external multilayer system surfaces during the guarded hot plate test. 
     The total heat field is achieved by adding together the sets of surface terms 
arising within each layer at each interface and by imposing continuity of 
temperatures and normal fluxes at the internal interfaces.  
     The following system of 2m equations is obtained: 
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 (17) 

Given that the temperatures 0tt  and 0bt  are uniform along the interfaces, this 

system is solved by imposing 0xnk   and 0zk  . The resolution of this system 

gives the amplitude of the surface terms at each interface, leading to the 
following temperature fields at layer j : 

 

1 2
0 0 0

0 0

( , , , ) j jt b
z j j j

j j

E E
T x y k E A A

 
 

   
 

 , if 
1

1 1

j j

l l
l l

h y h


 

    (18)

 

5.2 Results 

Temperatures 0tt  and 0bt  were first defined by applying a direct discrete fast 

Fourier transform in the time domain to the temperatures recorded by the 
thermocouples on the external surfaces of the system and subtracting the initial 
temperature.  Analysis of the experimental responses led to an analysis period of 
16h being established. This was enough to find the energy equilibrium of the 
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multilayer system with the environment (temperatures at the interfaces were 
again restored almost to the initial test temperatures). The upper frequency of the 
analysis was defined such that its contribution to the global response is 
negligible.  
     The analytical computations were performed in the frequency domain for 

frequencies ranging from 0.0 Hz  to

1.0

Hz
32 3600

, with a frequency increment of

 
1.0

 Hz
32 3600 2048

, which determined a full analysis window of 16h.  

     The temperature variation imposed on the top and bottom multilayer surfaces 
may be of any type.  To obtain the temperature in the time domain, a discrete 
inverse fast Fourier transform was applied in the frequency domain.  The aliasing 
phenomena were dealt by introducing complex frequencies with a small 
imaginary part, taking the form    ic  (where   0.7 , and   is the 

frequency increment). This shift was subsequently taken into account in the time 
domain by means of an exponential window, e t , applied to the response.  
     The final temperatures were obtained by adding the initial test temperatures to 
these responses. 

 

Legend 

a)  

 
b) c) 

Figure 3: Semi-analytical and experimental results. Temperature change at the 
layer interfaces of the multilayer systems: a) System 1 – 
homogeneous multilayer system. b) System 2 – heterogeneous 
multilayer system. c) System 3 – heterogeneous multilayer system. 

     The results of the experimental measurements are presented below and 
compared with those computed analytically. In the figures the solid lines 
correspond to the semi-analytical responses and the experimental measurements 
are represented by the lines with marked points. The plotted experimental results 
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at each interface correspond to the arithmetic mean of three thermocouple 
temperatures. 
     Figure 3 shows the results obtained for the different multilayer systems. 
System 1 is the natural cork (NC) homogeneous system, while the other two are 
heterogeneous (see section 4.1). These responses show a good agreement 
between the semi-analytical responses and the experimental results.  The results 
are similar over the full time window, i.e. the period in which the heating and 
cooling units are receiving energy, the period with a constant heat flow rate, and 
the time when apparatus has no power input. Note that at the beginning of the 
process all the thermocouples show a temperature similar to the ambient 
temperature, which conforms with the initial conditions defined for the semi-
analytical simulation.  
     Figure 3b) and c) shows the temperature change at each interface of the 
heterogeneous systems. System 2 is composed of EPS sandwiching MDF and 
NC layers, while System 3 has NC layers sandwiching an EPS and MDF layer. 
Comparing the semi-analytical solutions and experimental measurements for 
each system, it can be seen that the results are very similar. During the heating 
and cooling phase, when temperatures are becoming constant, we can see that the 
lowest temperature gradients occur in the MDF layers, given their higher 
conductivity and lower thermal diffusivity. 

6 Conclusions 

Three-dimensional semi-analytical solutions for transient heat conduction in a 
multilayer system in the frequency domain have been validated experimentally. 
The results showed a good agreement between experimental measurements and 
the computed solutions, thus we can conclude that the proposed semi-analytical 
model formulated in the frequency domain is reliable for studying transient heat 
conduction in multilayer systems. 

Acknowledgements 

The research work presented herein was supported by the Portuguese Foundation 
for Science and Technology (FCT), under research project PTDC/ECM 
/114189/2009 and doctoral grant SFRH/BD/48138/2008, and by the 
Coordination of Improvement of Higher Education Personnel (CAPES), a 
Brazilian government agency. 

References 

[1] Chang, Y.P., Kang, C.S., Chen, D.J., The use of fundamental Green’s 
functions for solution of problems of heat conduction in anisotropic media. 
International Journal of Heat and Mass Transfer 16, pp. 1905-1918, 1973. 

[2] Rizzo, F.J., Shippy, D.J., A method of solution for certain problems of 
transient heat conduction. AIAA Journal  2004-2009, 1970.  8, pp.

Computational Methods and Experimental Measurements XV  253

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press



[3] Tadeu, A., Simões, N., Three-dimensional fundamental solutions for 
transient heat transfer by conduction in an unbounded medium, half-space, 
slab and layered media. Engineering Analysis with Boundary Elements, 
30(5), pp. 338–349, 2006. 

[4] Kaşka, Ö., Yumrutaş, R., Comparison of experimental and theoretical results 
for transient heat flow through multilayer walls and flat roofs. Energy, 33, 
pp. 1816-1823, 2008. 

[5] Chen, Y., Zhou, J., Spitler, J.D., Verification for transient heat conduction 
calculation of multilayer building constructions. Energy and Buildings, 38, 
pp.340-348, 2006. 

[6] Sami A. Al-Sanea, Thermal performance of building roof elements. Building 
and Environment, 37(7), pp. 665-75, 2002. 

[7] International Organization for Standardization, ISO 8302: Thermal 
insulation – Determination of steady-state thermal resistance and related 
properties – Guarded hot plate apparatus, 1991. 

[8] European Standards, EN 12667: Thermal performance of building materials 
and products. Determination of thermal resistance by means of guarded hot 
plate and heat flow meter methods. Products of high and medium thermal 
resistance, 2001. 

[9] European Standards, EN 1602: Thermal insulating materials, Thermal 
insulation, Construction materials, Density measurement, Bulk density, Test 
specimens, Testing conditions, Buildings, 1996. 

 

254  Computational Methods and Experimental Measurements XV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press




