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Abstract 

In this work, we have theoretically re-visited the capillary rise process into a 
circular tube for very short time scales, retaining in this manner, the physical 
influence of the inertial effects. We use the boundary-layer technique or matched 
asymptotic expansion procedure in order to treat this singular problem by 
identifying two appropriate time scales: one short time scale related with inertial 
effects, , and the other, , the large scale which is basically associated with 
imbibition effects. Considering that the well-known Washburn’s law was derived 
by neglecting the inertial effects, the corresponding solution has a singular 
behavior for short times, which is reflected by an infinite mass flow rate. Then, 
for this purpose we derive a zero-order solution which is enough to avoid the 
singular behavior of the solution. In this manner, the Washburn’s solution 
represents only the external solution only valid for the large time scale . The 
above analytical result is compared with a numerical solution including the case 
when the contact angle between the meniscus and the inner surface of the 
capillary tube becomes a dynamic contact angle. On the other hand, the presence 
of inertial effects can induce oscillations of the imbibition front which are 
controlled by the dynamic contact angle. Therefore, in the present work we 
predict a global asymptotic formula for the temporal evolution of the height of 
the liquid. In order to show the importance of the inertial terms, we present this 
evolution for different values of the dimensionless parameters involved in the 
analysis. 
Keywords:  wicking process, inertial effects, singular perturbation, matched 
asymptotic expansions. 
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1 Introduction 

In recent years, the phenomenon of capillary wicking has strongly stimulated 
theoretical studies together with experimental evidences to show some peculiar 
aspects of these complex processes. In real situations, the wetting of a surface is 
controlled by rates of spreading of a liquid over the substrate and in general, this 
effect is devoted for very short times before to reach the well-known equilibrium 
thermodynamics Young's equation, where the surface tension force is exactly 
balanced with the gravity force. In addition, the movement of the contact line of 
the liquid front depends strongly on molecular kinetic of the dynamic contact 
angle. The existing theories and experimental results about the position and 
velocity of the contact line are not well understood yet. For instance, relevant 
studies of the spreading of a drop over horizontal and inclined flat plates have 
been developed to clarify that, in some cases; the macroscopic contact line can 
be preceded by a precursor film, where the van der Waals forces are not 
negligible. This idea was originally proposed by De Gennes [1]. Nowadays, an 
acceptable point of view to treat the dynamic of the contact angle is to include 
molecular forces, like van der Walls forces, improving in this manner, the 
hydrodynamics macroscopic models.  In this direction, Treviño et al. [2, 3] 
carried out a theoretical analysis to predict the influence of the precursor film on 
the dynamics of an axisymmetric drop spreading over a horizontal surface. The 
state of the art can be found in the book of Middleman [4], where relevant topics 
and applications are conducted to illustrate different wicking phenomena. 
     Since the pioneer work of Washburn [5], several mathematical models have 
been proposed to analyze those cases where the capillary forces always have a 
predominant effect. In this direction, the classical works of Joos et al. [6] and 
Batten [7] show rigorously the main forces that act on a liquid rising up a 
capillary tube. Hamraoui et al. [8] using high-speed imaging technique and 
solving a particular Washburn–Rideal–Lucas equation based on a fully 
developed flow, showed the physical influence of the dynamic contact angle on 
the wicking process. In this study, the authors postulated a fundamental 
relationship between the dynamic contact angle and the rate of the liquid rise 
within the capillary tube and the mathematical solution was validated through the 
experimental results. A similar study was reported by Hamraoui and Nylander 
[9] including numerical predictions of oscillations for the imbibition front. In 
reality, these oscillations were previously reported by Quéré [10] if the liquid 
viscosity is low enough. 
     In this paper, following the proposed analytical models by Hamraoui et al. [8] 
and Duarte et al. [11], we present an asymptotic analysis of zero-order to 
characterize the initial step of the wicking penetration process into a capillary 
circular tube, for the case when the inertial terms are important. The fundamental 
idea is to improve the existing theoretical predictions reported by previous 
schemes and related with the velocity of the front, using singular perturbation 
techniques. We anticipate that a singular behavior prevails if, for example, 
inertial and gravity forces are neglected. In this case, the most simple 
Washburn's law shows that the penetration velocity is of order of 
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 (see Ref. [4]) and for values of , the velocity is 

undetermined. In order to avoid this singularity, which reflects, in addition, an 
infinite mass flow rate into the capillary tube, we use two time scales to identify 
the dominant forces. For each time scale, we derive an appropriate zero-order 
governing equation and the corresponding solutions are matched according a 
well pre-established singular perturbation technique. Recognizing the importance 
of the inertial terms for the initial step of the wicking process, we anticipate that 
is only sufficient to derive a zero-order global solution, correcting up to this 
order the singular behavior of the Washburn's law. Therefore, in this first part of 
the present work the associated corrections with higher-order terms are omitted 
for simplicity.  

2 Theoretical analysis 

The present model corresponds to eqn. (1a) from Hamraoui et al. [8], and the 
main forces that act on a liquid rising up a capillary tube are due to surface 
tension, gravity, viscosity and inertia, respectively: 
 

  (1) 

 

where  is the radius of the capillary,   is a constant related with the dynamic 

contact angle, is the height of the liquid at time . are the surface 

tension, density and dynamic viscosity of the liquid, respectively, and  is the 

acceleration due to gravity force. In order to derive the above equation were 
basically neglected the entrance hydrodynamic effects and the liquid was 
assumed Newtonian, then we can write the average velocity of liquid rising at 

the capillary from Poiseuille’s law as  In addition, we 

adopt the relationship between dynamic contact angle, and the rate 

given by . The details of the above considerations 

can be found elsewhere, [8]. In this form, the present forces included in eqn. (1) 
are expressed in terms of the unknown height . This scheme has widely 

been used in lubrication theory to analyze the fluid flow in thin-liquid films 
(Oron et al. [12]). The above non-linear ordinary differential equation must 
satisfy two initial conditions. Traditionally, the majority of the published works 
only include the first of these initial conditions. The reason is based on 
neglecting the inertia terms. However, for very short times, the inertial terms 
must be included, even more for those cases of large radius. Therefore, we 
propose the following initial conditions: 

  (2) 
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     In the last initial condition,  is the unknown volumetric flow rate per unit 

area at the base of the capillary tube and must be determined as a part of the 
solution. However, in this manner the system of eqns. (1)–(2) is incomplete 
because is unknown. Therefore, it is necessary to add other restriction. This 

other condition comes from the equilibrium condition of the imbibition front. 

The above means that there is an equilibrium time, , for which we reach the 

equilibrium height given by . This last relationship is readily 

derived from the balance between the surface tension and gravity forces. 

Obviously, the equilibrium time must then be determined as a part of the 

solution. From this point of view, therefore, the additional condition can be 
written as 
 

  (3) 

 

     Now, for solving eqn. (1), we use appropriate dimensionless variables taking 

into account that, in a first approximation, the characteristic time  of the 

wicking penetration process is determined by a balance between the surface 
tension and viscosity forces. This order relationship can be written as

. Introducing the equilibrium height into the above order 

relationship, we obtain that . We assume . Therefore, 

introducing the following dimensionless variables: 
 

  (4) 

     

the system of Equations (1)–(3) are transformed to: 
 

  (5) 

 

with 
 

  (6) 

     
and the parameters , and  are defined as: 
 

  (7) 

 

Q

Q

eq
t

eq
h 2 / gR 

eqt

2
 :

eq eq
t t h h

gR




  

c
t

22 8 /
eq c

R h t  
2 2 316 /

c
t g R 

c eq
t t

,  
c e

t h
Y

t h
  

1 ,
dY dY d dY

Y Y Y
d d d d

 
   

      
   
   

0 :   0  ,    ;   :   1
eq

dY
Y Y

d
   


    

,    

2 2 3 2

2 2

8  
,  and = ,

8 128 128

gR Q gR gR Bo Ga

gR

   
  

   
  

232  Computational Methods and Experimental Measurements XV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press



where Bo and Ga represent the Bond and Galileo numbers, respectively. 
Therefore, the solution of the problem (5)–(6) shall provide 

 
In the above relationship is defined as 

 
with unknown. Therefore, the set of eqns. (5)–(6) represent 

an eigenvalue problem because the time is unknown. In this manner, the 

solutions are constructed by taking into account that for arbitrary values of the 
dimensionless parameters and , we must obtain a unique solution of 

for each value of the equilibrium time . In the 

remainder of this paper we analyze and classify the solutions according to the 
assumed values of , taking advantage of the fact that in general,  and  
are very small compared with unity. We anticipate that the values of are 
irrelevant for the zero-order solution of . 

 

2.1 Asymptotic limit of 1  (pre-wetting surface) 

As we are concerned, a first approximation, to clarify the role of the inertial 
terms we have omit in the present section, the physical influence of the dynamic 

contact angle . This particular situation can occur, for instance, when the 

internal surface in contact with the liquid has been previously wetted. Thus, we 

have that for  the dynamic contact angle, , practically coincides with of 

the equilibrium or static angle, . For simplicity, we take , which is a 

good approximation for wetted surfaces. However, we emphasize that this 
particular restriction does not significantly affect the general validity of the 

present analysis. Indeed, for  the first term of the right-hand side of eqn. 

(5) can be easily modified by a constant factor given by . Thus, eqn. (5) 

reduces to: 
 

  (8) 

 

     The numerical values for  are generally small and therefore, the above 
equation dictates that the inertial terms are only important for a time scale of the 
order of . Otherwise, for , the inertial term represented by the last term 
of the right-hand side of the above equation is negligible, in a first 
approximation. Thus, we can introduce two time scales to study the problem. 

2.1.1 Formulation for large times (τ ~ 1) 
For this relevant limit, we propose the following expansion  
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and substituting into eqn. (5), by retaining only terms of zero order, we obtain 
that 
 

  (10) 

 

and the solution is readily derived and given by (undetermined only by the 

constant ): 
 

  (11) 
 

     In principle, this solution can not satisfy the initial condition , 

because the inertial terms were neglected. Therefore, in order to evaluate the 

constant , we must retain the inertial terms. We show that is necessary to use a 

small time scale of order  consider the influence of the inertial effects. 

2.1.2 Formulation for short times (τ ~ ε)  
In this case, we accept that for short times the dominant terms of eqn. (8) are 
basically controlled by the surface tension and inertial forces. In this manner, the 
suitable scales to analyze this initial step are  and 

 and eqn. (8) is transformed to: 
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following expansion: 
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and the leading order equation is governed by a balance between the inertia, 
viscosity and surface tension forces, given by 
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because admits a first integral. The resulting first order non-linear equation is 
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omitted. Following the above procedure and applying the initial conditions (15), 
we obtain: 
 

  (16) 
 

     It is very important to note that the asymptotic solution for short times 
is . The same asymptotic formula was previously 

derived by Quéré [10] using other formulation for modeling the initial steps, 
where predominate inertial and surface tension effects. Thus, for short times the 
rising of the capillary wicking has a linear behavior, which avoids that the 
velocity displays a singular behavior. In addition, the above asymptotic 
relationship is independent of the dimensionless mass rate .  
Retaining then the inertial terms in order to obtain a global solution valid for all 
time, we can use the well-known asymptotic matching technique, which can be 
found elsewhere, (Van Dyke, [13]). In this case, we construct a global solution 
given by, 
 

  (17)  
 

where  represents the intermediate solution valid in the matching region 

. In this zone, the solutions have a similar behavior and can be 
calculated by using the following matching asymptotic principle [13], 
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of the above comments is: 
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  (21) 
 

where is the Lambert’s function. Finally, substituting eqn. (21) into eqn. (19), 
we obtain that 
 

 , (22) 
 

which is a global analytic solution for . It is really important to note that in 

order to calculate the numerical value of the Lambert function that appears on 
eqns. (21)-(22), we use an approximated function previously developed [14], 
with a maximum relative error of 0.1% and given by the relationship 
 

  (23) 

valid for  where is the well-known Euler’s number given by 
 

2.2 Numerical scheme 

In this subsection, we present some details related with the numerical procedure 
to complete the solutions of eqns. (5)–(6) for values of . We have 
included these numerical estimations to compare with the asymptotic solution of 
zero-order. The class of governing equation given by eqn. (5) can be readily 
integrated by the classical Runge-Kutta method of fourth-order.  In our case, we 
can define the following variables  
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and the second-order nonlinear differential equation (5) with the aid of the above 
relationships can be transformed to system of two first-order equations given by 
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rewritten as 
 
and . The use of the above initial conditions 

yields a divergent behavior for both functions 
 

and . Therefore, the 

numerical procedure to integrate eqns. (25) is to replace the above initial 
conditions by the asymptotic relationships for short times derived in section 
2.1.2. In terms of the functions 

 
and , the initial conditions are the 

following 
 

  (26) 

and 
 

 . (27) 

                                                              

     We can appreciate that for finite and small values of the time increment, , 
the initial condition (26) remains always different to zero and the other initial 
condition, given by eqn. (27), depends only the parameter , which assumes 
finite values in our numerical essays. In the present estimations, we use 

and different values of the parameter . In this manner the 
divergence is eliminated numerically. 

3 Results and conclusions 

     In this paper we developed a singular asymptotic analysis to describe the 
initial steps of the temporal evolution of wicking penetration of a fluid into a 
capillary tube. The use of two time scales permits us to conduct a boundary layer 
analysis to clarify the physical role of the inertial terms. In such case, the 
singularity of the front velocity is eliminated. On the other hand, the present 
analysis serve to emphasize that the inertia terms are also important not only for 
a short time scale as we comment from the analytical results, lines below. In this 
direction, we see that for different substances the inertia effect has a relevant 
influence even for large times. This occurs as a consequence of the 
dimensionless parameters and . In Fig. 1, we have plotted the dimensionless 
height of the wicking front as a function of the dimensionless time for the case of 

and two different values of the parameter ; i. e., and , 
that correspond to the inertial and non-inertial cases, respectively. We see the 
influence of the inertial terms is to decrease the temporal growth of the liquid’s 
front for small values of the dimensionless parameter . Therefore, the 
asymptotic analysis confirms that the inertial terms always modulate the initial 
steps of the wicking penetration process. This is an acceptable result always that 
we do not taken into account time scales smaller than , because in this case, 
capillary penetration can be controlled by hydrodynamic instabilities and more 
complex phenomena related with the influence of precursor film, chemical 
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adsorption activity in the inner surface of capillary tube, intermolecular forces, 
etc. In addition, the asymptotic solution dictated by eqn. (22) confirms that the 
usage of the singular perturbation analysis, the zero-order solution is enough to 
describe the main physical characteristics of the problem. 

 
Figure 1: Evolution of capillary rise, for . 

 

 

Figure 2: Evolution of capillary rise, for . 

     In Fig. 2, we have shown the combined influence of dimensionless 
parameters and . For instance, in this figure, we use four different values of 
the parameter and to plot the dimensionless  
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Figure 3: Comparison between the Lucas-Washburn’s formula, the present 

asymptotic zero-order solution, Eq. (22), and the non-inertial 
solution . 

height of the imbibition front as a function of the dimensionless time. Clearly, 
parameter works as a dissipative effect because causes a slower wicking 
process. Therefore, the well-known oscillating pattern previously reported by 
different authors [10, 11] is modulated by the influence of the parameter . 
Thus, for increasing values of this parameter is easier to reach the equilibrium 
height of the imbibition. In this sense, the limiting factor above is controlled by 
the parameter . The Fig. 3 shows the difference between the Washburn´s law 
and the obtained in the present work, showing that the evolution of the 
imbibition front is strongly influenced by considering the inertial effects in the 
dynamic equation describing the capillary process.  

Acknowledgements 

This work has been supported by the research Grant No. 58817 by Consejo 
Nacional de Ciencia y Tecnología anf 201000375 of Instituto Politécnico 
Nacional at Mexico. 

References 

[1] De Gennes, P. G., Wetting: statics and dynamics. Rev. Mod. Phys. Rev., 
(57), pp. 827- 863, 1985.  

[2] Treviño, C., Ferro-Fontán, C., Méndez, F., Asymptotic analysis of 
axisymmetric drop spreading. Phys. Rev. E., (58), pp. 4478-4484, 1998. 

[3] Treviño, C., Méndez, F., Ferro-Fontán, C., Influence of the aspect ratio of a 
drop in the spreading process over a horizontal surface. Phys Rev. E., (58), 
pp. 4473-4477, 1998. 

( 0) 







Computational Methods and Experimental Measurements XV  239

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press



[4] Middleman, S., 1995. Capillary penetration dynamics (Chapter 8). 
Modeling Axisymmetric Flows, Academic Press, Inc., New York, pp. 211-
239, 1995. 

[5] Washburn, E. W., The dynamics of capillary flow. Phys. Rev., (17), 
pp. 273-283. 1921. 

[6] Joos, P., van Remoortere, P., Bracke, M., The kinetics of wetting in a 
capillary. J. Coll. Int. Sci., (136), pp. 189-197, 1990. 

[7] Batten Jr., G. L., Liquid imbibition in capillaries and packed beds. J. Coll. 
Int. Sci., (102), pp. 513-518, 1984. 

[8] Hamraoui, A., Thuresson, K., Nylander T., Yaminsky, V., Can a dynamic 
contact angle be understood in terms of a friction coefficient? J. Coll. Int. 
Sci., (226), pp. 199-204, 2000. 

[9] Hamraoui, A., Nylander, T., Analytical approach for the Lucas–Washburn 
equation.  J. Coll. Int. Sci., (250), pp. 415-421, 2002. 

[10] Quéré, D., Inertial capillarity. Europhys. Lett., (39), pp. 533-538, 1997.  
[11] Duarte, A. A., Strier, D. E., Zanette, D. H., The rise of a liquid in a 

capillary tube revisited: A hydrodynamical approach. Am. J. Phys., (64), 
pp. 413-418, 1996. 

[12] Oron, A., Davis S. H., Bankoff, S. G., Long-scale evolution of thin liquid 
films. Rev. Mod. Phys., (69), pp. 931-980, 1997. 

[13] Van Dyke, M., Perturbation Methods in Fluid Mechanics, second ed. 
Academic Press, Inc., New York, 1964. 

[14] Fries, N., Dreyer, M., An analytic solution of capillary rise restrained by 
gravity.  J. Coll. Int. Sci., (320), pp. 259-263, 2008. 

[15] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey D. J., Knuth, D. E., 
On the Lambert W function. Adv. Comp. Math. (5), pp. 329-359, 1996. 

240  Computational Methods and Experimental Measurements XV

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press




