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Abstract  

A finite element analysis and a photoelastic stress analysis are conducted in 
order to determine the stress field developed in the pin on plan contact problem. 
Although this problem is relatively easy to study experimentally, the purpose 
here is to show the possibilities of the finite element method; after validation of 
the numerical procedure, problems with complicated geometry and boundary 
conditions can then be solved numerically. Isochromatic and isoclinic fringes, 
similar to the ones obtained experimentally by the photoelastic method, are 
obtained numerically over the whole model. The details of the finite element 
solution are fully given in the paper.  Many studies have been achieved in order 
to separate the principal stresses and obtain their orientations (integration of the 
equilibrium equations …) in order to compare them with the simulated results. 
However, this requires a high precision of measurement. Here, a whole field 
comparison of the experimental and numerical photoelastic fringes and a local 
analysis using the principal stresses difference, allowed us to validate the 
numerical approach. Relatively good agreements were obtained.  A numerical 
solution for a three dimensional contact problem is also developed for a rigid 
parallelepiped on a deformable cylinder. The mesh was refined in the 
neighborhood of the contact zone in order to achieve better approximation of 
stresses. The loading is given by the limit conditions that are simply the imposed 
displacement. The calculated photoelastic fringes are obtained for various 
sections inside the model.  These simulated fringes can be compared to the 
experimental ones which can be obtained by slicing the model and analyzing it in 
a plan polariscope. The program developed allows us to calculate stresses on any  
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given section inside the model, particularly in the neighborhood of the contact 
zone. 
Keywords:   birefringent, isoclinic, isochromatic, fringe, photoelasticity, contact, 
stress field, stress freezing, slicing. 

1 Introduction 

Several studies have shown that failure of mechanical parts occur generally in 
the neighborhood of the contact zones [1–4]. Stress initiation is mainly 
controlled by the shear stress mechanisms, particularly for metallic materials, by 
displacement of the dislocations on the crystallographic plans of higher densities. 
It is therefore very important to determine the type and the amplitude of the 
imposed mechanical solicitations. 
     Theoretical and numerical studies of the contact stresses are in some cases 
very complex. Several methods have been used to analyze this type of problem. 
In this work two methods have been used: the photoelasticity method and the 
finite elements method in order to determine stresses developed on the model.  
     The photoelastic fringes obtained experimentally with a plan polarized light 
are used to determine the values of the principal stresses difference over the 
whole model.  To obtain the individual values of the stresses, that is to separate 
the principal stresses, several studies have been conducted by integrating the 
equilibrium equations (Zenina et al. [5] and Plouzennec [6]). However, a high 
precision is required in the unwrapping of the isochromatic and the isoclinic 
fringes obtained on the analyzer to determine respectively the difference and the 
direction of the principal stresses.  
     As already done in previous papers (Bilek et al. [7, 8]), it is sufficient to make 
a comparison between experimental and simulated fringes. Another comparison, 
which is more accurate, is made between experimental and simulated values of 
the principal stresses difference along the vertical axis of symmetry. 

2 Experimental analysis  

The model, made of epoxy resin (PLM-4R) mixed with a hardener, is mounted 
on a loading frame (figure 1) equipped with two dynamometers. The model is 
loaded via a steel pin of rectangular cross section (12x12mm), the load is set to 
F=1300N. The loading frame with the model is then positioned on the 
polariscope for analysis. 
     Plane polarized light is used to observe the photoelastic fringes. The 
isochromatic and the isoclinic fringes obtained on the analyzer are used to 
determine the values of the principal stresses difference and the principal stresses 
directions, particularly in the neighborhood of the contact zone. 
     The model in the shape of a parallelepiped (67 x 58 x 10 mm) is cut in the 
birefringent material.  Poisson’s ratio and Young’s modulus, which are necessary 
to implement the numerical solution, are measured with the help of electrical 
strain gages mounted respectively on a tensile specimen and a cantilever beam.  
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Figure 1: The model mounted on the loading frame. 

 
 

 

Figure 2: Light propagation through a photoelastic model. 

Strains measured on the surface of the models allowed us to obtain easily these 
necessary values: µ= 0.37 and E=2435 MPa. 
     Figure 2 shows the well known photoelastic method based on the birefringent 
phenomenon; the refractive index n1 and n2 which depend on stresses in the two 
principal directions induce a retardation angle φ. The light intensity obtained on 
the analyzer after traveling through the polarizer, the model and the analyzer has 
two terms: sin22α  and sin2φ/2 which give respectively the isoclinic fringes and 
the isochromatic fringes (eq. (1)). 
 

 
 (1) 

 
     The isochromatic fringes allow us to obtain the values of the principal stresses 
difference on the model by using the well known relation (eq. (2)).  This can 
only be done once the values of the fringe order N have been completely 
determined. The values of the fringe order N are determined either by the 

I= a2 sin22α sin2φ/2
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compensation technique or, whenever possible, by starting from a non stressed 
region on the model were N=0. The fringe orders can then be easily deduced for 
the other fringes. 

(2) 
 
     The ratio f=λ/C called the fringe constant depends on the light wave used and 
the model material. Several solutions are available to obtain this value easily. 
Here, we subjected a beam (40mm x10mm cross section) to a constant bending 
moment (15000 N.mm)  in a portion of its length (figure 3), the light wave length 
used is λ=546nm. We can see that the fringes are parallel to the horizontal axis of 
symmetry as one would expect; stresses at a same distance from the neutral axis 
are identical. We recall that isochromatics are loci of points having the same 
principal stresses difference. The isochromatic fringes are, therefore, parallel to 
the neutral axis of symmetry. Knowing the fringes orders   and using the fact that 
the stress σ2 is equal to zero (no load is applied in that direction), the value of the 
fringe constant can then be easily deduced by using (eq. (2)):  
f=11,65N/mm/fringe. 
 
 

 

Figure 3: Model observed on a dark field polariscope.  

 
     Once the value of the fringe constant is determined, we can proceed to 
continue the analysis. The experimental isochromatic fringes (figure 4) on the 
analyzer of the polariscope are obtained with  monochromatic light. Two quarter 
wave plates are  added on the light path in order to eliminate optically the 
isoclinics that can hide the isochromatics which are necessary to determine the 
values of the principal stresses difference on the whole model, particularly in the 
neighborhood of the contact zone. These experimental isochromatic fringes will 
be compared to the simulated fringes obtained with the finite element analysis. 
     Another comparison is possible between the experimental isoclinics fringes 
and the simulated ones. The experimental isoclinics fringes (dark fringes on 
figure 5) are obtained for different positions of the polarizer and the analyzer. An 
image of the photoelastic fringes is recorded after each new position, the 
analyzer and the polarizer axes remain orthogonal to each other in order to 
always have a plan polarized light. 
     We recall that dark isoclinic fringes appear where the directions of the 
principal stresses coincide with the directions of the polarizer and the analyzer. 
The angle θ gives the position of the polarizer, the reference θ=0 taken as the 
vertical axis. The isoclinic fringes can then be easily used to obtain the principal 
stress trajectories called also isostatics. Several numerical methods have been 
developed to obtain the isostatics rapidly and efficiently. 

( 1 -  2). = N (λ/C)/e 
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Figure 4: Isochromatic fringes obtained experimentally. 

     In this paper we are interested mainly in validating the finite element solution; 
it is therefore sufficient to compare the experimental and the calculated fringes. 
Another comparison, which is more accurate, is made between stresses obtained 
experimentally by analyzing the experimental isochromatic fringes and stresses 
obtained directly with the finites elements simulation, along the vertical axis of 
symmetry of the model.   
 
 

 

Figure 5: Isoclinic fringes at different angles. 

3 Numerical analysis 

In the finite element calculations, we considered that the material behaves 
everywhere as a purely elastic isotropic material. Young’s modulus 
(E1=210000MPa, E2=2435 MPa) and Poisson’s ratio (µ1=0.3, µ2=0.37) for the 
two bodies in contact were introduced in the program. The mesh was refined in 
the neighborhood of the contact zone (figure 6) in order to achieve better 
simulation of stresses. 
     To achieve a better simulation of the applied load, an imposed displacement 
is applied to the model at the contact surface between the pin and the plan. The 
equivalent applied load is calculated then as the sum of the elementary vertical  
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Figure 6: Finite element meshing. 

load components at the nodes located at the lower surface of the model  which is 
in contact with the loading frame. 
     Iterations on displacements at the contact nodes are stopped when the 
calculated corresponding load is equal to the value of the applied load within an 
acceptable error (0.1%) set in the program. The isochromatic fringes represented 
by sin2φ/2 (eq. 1) are calculated then easily over the whole model. The details of 
the calculation are shown hereafter. 

3.1 Numerical calculation of the isochromatic fringes 

The following relation  (eq. 3) which can be obtained readily from Mohr’s circle 
for stresses allows us to calculate the principal stresses difference at any point of 
a stressed model. 
 ((σx – σy)

2 +4τ2
xy)

0.5 = σ1 – σ2 = Nf/e (3 
 
     The different values of the retardation angle φ (eq. 4)  can be calculated at any 
point on the model using the following relation: 
 
 φ = 2πN = ((σx – σy)

2 +4τ2
xy)

0.5 2π e/f (4) 
 
     The different values of sin2φ/2 which represents the isochromatic fringes 
(figure 7, left) can then be easily calculated over the whole model. A comparison 
can then be made with the isochromatic fringes obtained experimentally 
(figure 7, right). We can see relatively good agreement; however in the 
neighborhood of the contact zone we can see some discrepancies.  
     Figure 8 shows the variation of the principal stresses difference along the 
vertical axis. The value increases to approximately 6 MPa and then decreases 
away from the contact zone. For the experimental solution it is difficult to 
determine the stresses close to the contact zone.    
     The following hypotheses can be considered to explain these differences. For 
the finite elements procedure, the constitutive equations (mechanical behavior) 
taken for the material, the mesh sizes especially close to the contact zone and the 
boundary condition are not exactly the same as the real ones. Also, for the 
experimental procedure the loading is not perfectly symmetrical and the spatial 
resolution in the neighborhood of the contact zone is limited. 
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Figure 7: Simulated isochromatic fringes (left), experimental ones (right). 

 
 
 

 

Figure 8: Principal stresses difference along the vertical axis. 

     The term sin2 2α represents the isoclinic fringes which are loci of points 
where the principal stresses directions are parallel to the polarizer and the 
analyzer. In the simulation  program, the different values of the isoclinic 
parameter α can be calculated with the following relation (eq. 5) which can be 
obtained readily from Mohr’s circle for stresses: 
 
 

 α = arct (2τxy /(σx-σy)) (5) 
 
 

     The program calculates the different values of the parameter α. The image 
corresponding to the isoclinic fringes (sin2 2α) can then be calculated and 
displayed (figure 9). The comparison is then possible with the experimental 
isoclinic fringes which are the dark fringes obtained experimentally (figure 5). 
Experimentally it is not possible, of course, to observe the isoclinics alone 
whereas for the finite element solution this is possible. Good agreement was 
obtained between the experimental and the simulated isoclinic fringes. 
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Figure 9: Simulated isoclinic fringes.  

4 Numerical solution for the case of a rigid parallelepiped on 
a deformable cylinder 

The birefringent cylindrical specimen (35mm diameter and 50mm length) is 
subjected to a compressive simulated load by a steel rigid parallelepiped (cross 
section 10x10 mm). The purpose here is to calculate stresses on any chosen plan 
perpendicular to the longitudinal axis of the cylinder (figure 10), particularly in 
the neighborhood of the contact zone. Simulated fringes similar to the 
photoelastic fringes obtained experimentally can then be calculated and 
displayed.  
 

 

Figure 10: Experimental model.  

     The same as for the previous two dimensional case, displacements are 
imposed on the upper surface of the model at the nodes that will come into 
contact after the load is actually applied. The imposed displacement is calculated 
separately at  each node; the imposed displacement decreases from a set value 
for the first point of contact and decreases as we move away from this point. The 
corresponding applied load is then calculated as the sum of the elementary 
vertical loads on the nodes at the lower surface of the model which is in contact 
with the loading frame.    
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4.1 Simulation for the case of mechanical slicing 

If one uses the stress frizzing experimental technique to analyze the stress field 
by mechanically slicing the model and then analyzing stresses on a regular 
polariscope with circularly polarized light (quarter wave plate are added to the 
polariscope in the light path) to obtain the photoelastic fringes, the light intensity 
on the analyzer is given in by the following relation (eq. (6)): 
 
 I= a2 sin2 (φ/2) (6) 
 
     In order to analyze stresses in three dimensional models we generally use the 
stress freezing technique which consists on locking stresses in the model. The 
model is then mechanically sliced with chosen plans in order to allow a two 
dimensional analysis on a regular polariscope. 
     Since for the stress freezing technique stresses should be locked inside the 
model at the stress freezing temperature, fringe constant and Young’s modulus 
of the model material should be determined at this temperature. These 
characteristics, f=0.44 N/mm/fringe and E=15.9 MPa, are taken from reference 
(Bilek et al. [4]). These values should then be introduced in the finite elements 
program in order to implement the solution.    
 

 
 

Figure 11: Simulated isochromatic fringes. 

     In the finite element solution, it is necessary to select the thickness of the slice 
to be isolated. The slice thickness should be small enough so that stresses remain 
relatively constant across the thickness. Here, we choose 10 mm which 
corresponds approximately to the generally used thickness for a two dimensional 
model. This process is repeated along the length of the cylinder in order to 
determine the variation of stresses in the whole volume. Figure 11 shows the 
simulated isochromatic fringes obtained with software package castem. 
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Figure 12: Principal stresses difference along the vertical axis of symmetry. 

     For a same slice (image 1, figure 11), we can see that stresses decrease as we 
move away from the contact zone.  Also as we move along the cylinder (image 1 
through 8) we see less isochromatic fringes which show clearly that stresses 
decrease. The stresses at the lower of the cylinder remain relatively constant; the 
load is uniformly distributed over the surface of contact with the loading frame. 
     The principal stresses difference along the vertical axis of symmetry increases 
to a maximum value of about 0.72 MPa and then decreases as we move away 
from the contact zone. The value of the principal stresses difference increases 
again, as we move close to the contact zone of the cylinder with the loading 
frame, to reach a value of 0.27 MPa. This graph can be obtained along the 
vertical axis for any plan along the length of the cylinder. 

5 Conclusion 

We have shown through the study of a two dimensional model that the 
simulation of stresses developed on a plan loaded with a pin gives relatively 
good agreements with the experimental ones. The isochromatic and the isoclinic 
fringes are comparable to the photoelastic fringes obtained on a regular 
polariscope. A solution for a three dimensional problem is developed. The 
isochromatic fringes are obtained for various sections along the cylinder.  The 
principal stresses difference can be easily calculated in the volume of the 
cylinder. This allows us to locate the zones of stress concentration which is of 
great importance in the design of mechanical components. An experimental 
solution either by the stress freezing method or the optical slicing method can be 
used for comparison purposes. 
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