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Abstract 

The exponentially weighted moving average (EWMA) can be used to report the 
smoothed history of a production process, and has some considerable advantages 
over a simple moving average (MA). Discussion of these advantages includes 
comparison of the filter characteristics of the EWMA and MA in the frequency 
domain. It is shown that the EWMA provides a much smoother filter than does 
the MA, and the corresponding implications of this difference are examined in 
the time domain. In smoothing a production process, the successive entities 
being smoothed commonly have varying “weights”, where the weights may be 
such quantities as tonnage, value or time interval. Standard textbook treatments 
of moving averages and exponential smoothing are generally confined to equal 
spaced data of equal weight. Adapting the average to cope with items of varying 
weight is shown to be trivial for the case of MA, but is not so obvious for the 
EWMA. This paper shows how the exponential smoothing constant has to be 
adapted to provide a consistent EWMA. Applications of the EWMA in process 
control are discussed, with particular reference to quality control in the mining 
industry.   
Keywords: quality control, forecasting, exponential smoothing, sample size. 

1 Introduction 

It is common to consider a series of observations, xn, where each observation is 
equivalently spaced in time or distance or some other relevant dimension. 
     For forecasting and for system control purposes, it is useful to have some 
summary of the performance up to the nth observation. 
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     The summary could be calculated as the mean (M) of all the observations 
since the first one: 
 

 Mn= 1nxm/n (1) 
 

     Usually we are mainly interested in recent history, so a straight average over 
the entire history of observations. Two approaches are to consider either a 
Moving Average (MA), applying equal weight to the past k observations, or an 
Exponentially Weighted Moving Average (EWMA), where successively 
declining weights are applied as we go further back in history. 

1.1 Moving average (MA) 

Usually we are mainly interested in recent history, perhaps over the past k 
observations, so a moving average (MA) over those k observations would be 
more appropriate: 
 

 MAn = m=0k-1xn-m/k (2) 
 

     Figure 1 shows the uniform weights of 1/k that are applied to the past k 
observations. 
 

 

Figure 1: Moving average (MA) weights applied to recent data. 

     The moving average has the disadvantage that, for the first k intervals, each of 
the observations is treated as being of equal importance, but then is suddenly 
disregarded, as soon as it falls off the end of the data being averaged. This 
discontinuity has several disadvantages that will be discussed more fully in a 
later section. 
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1.2 Exponential smoothing (EWMA) 

Exponential smoothing, across an “exponentially weighted moving average” 
(EWMA), provides a smoother means of averaging, where data becomes 
gradually less influential as it ages.  
 

 EWMAn = Sn = (1-)Sn-1 + xn 

 = (1-)((1-)Sn-2 + xn-1) +xn 

 = m=0Infinity(1-)mxn-m (3) 
 

     Figure 2 shows how the weights applied to earlier data die off exponentially 
as we go back through the data history.  
 

 

Figure 2: Exponential smoothing (EWMA) weights applied to recent data. 

     Exponential smoothing is commonly used in forecasting, and is generally 
described in forecasting textbooks. Diebold [1]) provides a good description. 
     It can be shown that the EWMA is a minimum mean squared error predictor 
when the true data generating process is ARIMA(0,1,1).ARIMA processes cover 
the very wide field of “Autoregressive Integrated Moving Average” processes, 
identified by Box and Jenkins [2]. As its parameters imply, an ARIMA(0,1,1) 
process is not autoregressive, but is first-order integrated moving average. 
Ramjee et al. [3] show that the EWMA method can also provide simple, yet 
useful, forecasts for other types of ARIMA processes. 
     Treatments in the literature are generally confined to equally spaced 
observations of equal weight, so that each new observation is of equal 
importance. However, it is commonly the case that the desired quality control or 
forecasting relates to observations that are of varying weight.  
     An example of this situation, with observations of varying weight, would be a 
mine’s production, shift by shift, of ore of varying tonnage and grade. In this 
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particular example, the objective may be to forecast the grade of the next shift’s 
production. Alternatively, the purpose may be to summarise the grade of the 
recent production so that the next shift’s ore can be selected so as to restore the 
smoothed grade back to its target value. Everett [4] provides an example of this 
type of EWMA application in the iron ore mining industry. 
     Whether the averaging is being used to generate a forecast or to control a 
production system, it is being used to summarise recent behaviour. In doing so, it 
needs to respond to sustained changes in the data, but not be over sensitive to 
short-term variations. The averaging process is therefore being required to act as 
a low-pass filter. 
     Sections 2 and 3 will discuss more fully the advantages of an exponentially 
weighted EWMA over an MA. Comparing the Fourier transforms of the filters 
enables their performance as low-pass filters to be evaluated, and clearly 
demonstrates the advantages of the EWMA over the MA. 
     Adjustment for varying sample size is comparatively straightforward for the 
MA. For the EWMA, the adjustment for varying sample size is not so obvious, 
and appears to have been neglected in the literature.  
     Section 4 will consider the appropriate treatment of data where sample sizes 
vary. 
     Both for MA and EWMA, the choice of weighting constant, and the 
consequent length over which the data is averaged, depends upon the purpose for 
which the average is being used.  

Section 5 considers the choice of the alpha constant for an EWMA, and its 
relation to the length of a comparable MA. 

2 MA and EWMA compared 

Figure 3 shows a signal x with a wavelet disturbance, first up and then down. 
 

 

Figure 3: Signal “x” with a wavelet disturbance. 

     Figure 4 shows the effects of applying a Moving Average (MA) and 
Exponential Smoothing (EWMA) to this signal x. 

x 

1                                                     k  
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Figure 4: Signal “x” with a wavelet disturbance. 

     In both cases the disturbance appropriately appears in the smoothed trace at 
the time it occurs in the signal x.  
     With the MA an equal and opposite disturbance appears at a delay equal to 
the length of the Moving Average. This delayed rebound effect is spurious, since 
its occurrence is dependent solely on the length of the MA and has no relation to 
the wavelet disturbance.  
     The EWMA, by contrast, is well behaved, with a gradual return to normal 
after the disturbance. 

3 MA and EWMA considered as low-pass filters 

3.1 The Fourier transform 

Fourier analysis provides a standard procedure for converting data from the time 
or distance domain to the equivalent frequency domain [5].  

MA 

1                                                      k  
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     Consider a set of N data values, xn, equally spaced in time or distance. Their 
Fourier transform generates N points in the frequency spectrum. These N points 
in the frequency spectrum carry exactly the same information as the N points in 
the time or distance domain. The lowest frequency has a period equal to the data 
length.  
     Fitting cosine and sine waves of this wavelength to the data generates the real 
and imaginary components of this fundamental frequency.  
     Further, fitting cosine and sine waves of each multiple of the fundamental 
frequency generates its real and imaginary components, up to the “Nyquist” 
frequency. The Nyquist frequency is N times the fundamental frequency and has 
a wavelength equal to twice the data interval. Any signal frequency higher than 
the Nyquist frequency cannot be detected, but will “fold back” to add to the 
amplitude of a corresponding lower frequency. 
     Each frequency value can be expressed either as real and imaginary 
components (the cosine and sine fits), or as an amplitude and phase 
     The Fourier transform converts the N values in the time (or distance) domain 
to the equivalent N values in the frequency domain. 
     Applying the Fourier transform in turn to the frequency domain data converts 
them back to the time (or distance) domain.  
     For real-world data, the time (or distance) values are strictly real, while the 
frequency values will have real (sine wave) and imaginary (cosine wave) 
components corresponding to their amplitude and phase. 
     If the data length N is a power of 2 (i.e. N = 2r, where r is an integer), the 
very efficient Fast Fourier transform algorithm can be used. Cooley and Tukey 
[6] first publicised this algorithm in 1965 (although it was discovered by Gauss 
in 1805). 
     Sequentially averaging a set of data is equivalent to applying a low-pass filter 
to the frequency data.  
     Applying averaging weights as in equations (2) or (3) to the time (or distance) 
data is a “convolution” operation. Multiplying the frequency spectrum of the 
filter weights by the frequency spectrum of the data set is exactly equivalent to 
convolving the time (or distance) domain data. The Fourier transform of the 
resulting product of the two frequency spectrums gives the same result as is 
obtained by convolving the corresponding MA or EWMA with the time (or 
distance) data. 
     MA and EWMA each act as low-pass filters, so it is instructive to compare 
the frequency spectrums.  

3.2 Frequency spectrum for the moving average (MA) 

The amplitude of the frequency spectrum for the Moving Average filter of 
Figure 1 is shown in Figure 5. 
     The amplitude is the square root of the summed squares of the cosine and sine 
Fourier components. (The phase would be the arctangent of the ratio of the sine 
and cosine Fourier components, but is not being considered here). 
     The amplitude spectrum of the MA filter is seen to have side lobes. Instead of 
the low-pass filter steadily reducing the amplitude of higher frequencies, it  
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Figure 5: The amplitude spectrum for an MA filter of length = 10. 

 
completely cuts out frequencies of 0.1, which corresponds to a wavelength of 10, 
the length of the Moving Average filter in Figure 1.  
     As we increase the frequency, the amplitude rises again, before again falling 
to zero at a frequency of 0.2 (5 units wavelength). This behaviour is repeated, 
allowing through ever diminishing side lobes, with complete cut-off at each 
harmonic of the filter length. 
     So, as we consider frequencies increasing from the fundamental lowest 
frequency, they will alternately be filtered out, allowed through, filtered out, and 
so on repeatedly, with the proportion of signal amplitude allowed through 
steadily diminishing for each side lobe. 
     The non-monotonic behaviour of the MA amplitude spectrum is a direct 
consequence of the MA filter’s discontinuity in the time (or distance) domain 
that we saw in Figure 1.  
     The operational implication is that some high-frequency disturbances will 
pass through the filter, while lower-frequency disturbances will be completely 
blocked if they happen to be close to one of the harmonic frequencies. 
     For this reason, we must conclude that the Moving Average (MA) filter is 
unsatisfactory. 

3.3 Exponential smoothing (EWMA) 

The amplitude of the frequency spectrum for an Exponentially Smoothed filter of 
Figure 2 is shown in Figure 6.  
     The amplitude spectrum now has no side lobes, but declines steadily and 
exponentially. So the EWMA filter is much better behaved than the MA filter. 
The EWMA filter monotonically decreases the amplitude passed as the 
frequency increases. 
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Figure 6: The amplitude spectrum for an EWMA filter with alpha = 0.1. 

4 Adjustment for varying sample size 

The treatment so far has assumed that the data are of equal importance. 
However, in many real situations, successive observations may need to exert 
varying influence. For example, if we are forecasting the grade of ore from 
previous shifts of varying tonnage, the higher tonnage shifts should have more 
influence than those of lower tonnage.  
     We will now consider such a situation of varying tonnage, so that 
observations xn relate to tonnages wn. 

4.1 Moving average (MA) 

If the MA is to be taken as the moving average over a total tonnage T, then 
equation (2) becomes:  
 

 MAn = m=0k[n]wn-mxn-m/T, where m=0k[n]wn-m = T (4) 
 

     For a Moving Average, the length k[n] over which the average is taken will 
therefore have to be varied so that it encompasses the same tonnage (or as nearly 
as possible, the same tonnage). 

4.2 Exponential smoothing (EWMA) 

The treatment for exponentially smoothing over observations with varying 
tonnages is not so immediately obvious. 
     It is clear that the appropriate alpha value is a function of the tonnage: if the 
tonnage w increases we should use a larger [w], so that a larger tonnage has 
more influence on the smoothed grade. 
     Consider two scenarios. Under the first scenario, two successive shifts have 
identical grade x and equal tonnage w. 
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     Under the second scenario a single shift delivers ore of twice the tonnage, 2w 
but again with the same grade x. 
     If we start with a smoothed grade SO, it is clear that under either scenario we 
should end up with the same grade, which we shall call SF. 
     Under the first scenario, where each of the two shifts has grade xn and 
tonnage wn: 
 

 SF = (1-[w])((1-[w])SO + [w]x) + [w]x 

 = (1-[w])2SO + [w](2-[w])x (5) 
 

     Under the second scenario, the single shift has grade x and tonnage 2w: 
 

 SF = (1-[2w])SO + [2w]x (6) 
 

     Equating the coefficients of SO  and of x in equations (5) and (6) appears to 
give rise to two conditions that have to be satisfied. 
     For the coefficients of SO in equations (5) and (6) to be the same: 
 

 (1-[2w]) = (1-[w])2 (7) 
 

     For the coefficients of x in equations (5) and (6) to be the same: 
 

 [2w] = [w](2-[w]) (8) 
 

     We see that these two conditions are in fact identical, both being equivalent 
to: 
 

 [2w] = (1-[w])2 (9) 
 

     By induction, the condition can be extended to: 
 

 [nw] = 1 - (1-[w])n (10) 
 

     If w = 1, unit tonnage, then: 
 

 [W] = 1 - (1-[1])W (11) 
 

     Equation (11) has the satisfactory properties that [0] is zero, and also that 
[W] tends to 1 as W becomes very large. 
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5 How large should alpha be? 

We have seen that alpha for an observation of tonnage W should be a 
monotonically increasing function of the tonnage W, and of [1], the alpha for 
unit tonnage. 
     The question remains as to the appropriate choice for [1]. Clearly, this must 
depend upon the purpose for which the exponentially smoothed grade or other 
variable is being monitored. 
     In the control system discussed by Everett [4], ore was selected for each shift 
so that the expected grade of the selected ore, exponentially smoothed into the 
shift history, gave a grade on target. The ore was being blended onto stockpiles 
of 200 kilotonnes. So if a Moving Average (MA) were being used, it would be 
appropriate average over a tonnage T = 200 kt, as in equation (4), so the 
averaging weight applied to each kilotonne is 1/T. 
     For Exponential Smoothing, the choice of [1] is not so clear cut. One 
criterion is to consider the average “age” of the sample. For a moving average, or 
for a completed stockpile of tonnage T, the average age is T/2. For an 
exponentially smoothed average to have the same average age of sample: 
 

  = m=0Infinitym[1](1-[1])m (12) 
 

 = (1-[1])/[1] (13) 
 

 [1] = 2/(2+T) ≈ 2/T (14) 
 

     So the starting weight for an EWMA should be about twice that of an 
equivalent MA, as shown in Figure 7: 
 

 

Figure 7: Equivalent EWMA and MA weights applied to recent data. 
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     In a production process, such as a mining operation, T would be the 
subsequent blending tonnage, achieved either by blending directly onto 
stockpiles or inherent in the processing and transportation system.  

6 Conclusions 

By considering both the time (or distance) domain and the frequency domain, 
this paper has shown that Exponential Smoothing (EWMA) has considerable 
advantages over Moving Averages (MA). 
     The problem of varying sample sizes has been considered, and we have 
shown that the appropriate exponential smoothing factor for a sample of size w is 
given by equation [11], [W] = 1 - (1-[1])W, where [1] is the exponential 
smoothing factor to be applied to samples of unit weight.  
     We have further shown, in equation (14), that [1] should be approximately 
2/T, where T is the comparable MA tonnage, or the blending tonnage in a 
production process. 
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