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Abstract 

In real constructions, particularly in prefabricated constructions, structural 
connections can be neither absolutely rigid nor ideally elastic, but semi-rigid, 
which significantly changes the stresses and strains in the structure. Hence, there 
is a need to carry out the structural analysis and design taking into account the 
level of rigidity of the connections. For that purpose the ratio between real and 
absolutely rigid fixing of the member ends is assumed to be from zero to one. 
     The design procedure for structures with semi-rigid connections under static 
load based on the classical deformation method has already been described in our 
previous works. Having in mind that matrix formulation of a problem is more 
convenient for contemporary structural analysis, this is applied to the design of 
the considered systems and is described in detail in this paper. 
     The formation of the stiffness matrix for a bar with semi-rigid connections, as 
well as the vector of the equivalent load, is shown to depend on the level of 
rigidity of a joint connection. These matrices can be introduced into well-known 
computer programs to modify them for the static design of a plane linear system 
whose connections are semi-rigid. 
     A numerical example regarding a two-floor reinforce concrete frame with a 
span of 24m of the AMONT prefabricated structural system in Morava Krusce, 
Serbia, is included in the paper. 
Keywords: semi-rigid connections, stiffness matrix, interpolation function, vector 
of equivalent load, prefabricated reinforced concrete structural system. 
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1 Introduction 

Many worldwide researches, based on numerical simulations and experimental 
results, indicated that a great number of connections of members in joints of 
linear systems can neither be classified as ideally pinned nor as absolutely rigid. 
The results of an integral project devoted to attesting the static and dynamic 
stability of typified modules of the reinforced concrete (RC) AMONT structural 
system of industrial halls realized in IZIIS, Skopje, Macedonia (Ristic et al. 5), 
together with the Institute of Civil Engineering and Architectural Faculty at Nis, 
confirmed this statement. It has been noticed from the tests performed that the 
level of rigidity of connections is of great importance, particularly in the case of 
precast structures, because even a low level of rigidity in precast connections 
affects the redistribution of action effects.  
     With the purpose of including the real rigidity of connections in the structural 
design (Milicevic et al. 2), the ratios between real and absolutely rigid the 
fixing of the member ends are assumed to be ik  and ki  ( 0 1ik ki;   ), 

where: 
* *

ik ik i ki ki k/ , /                                        (1) 

With this assumption about the level of rigidity, the design procedure for 
structures with semi-rigid connections is developed using the deformation 
method. The classical formulation of the deformation method for systems with 
standard connections has already been described (Djuric and Jovanovic 1), as 
well as for systems with semi-rigid connections (Milicevic and Zdravkovic 2). 
In this paper, the deformation method is applied in matrix formulation taking 
into account assumption (1) and the derivation of the stiffness matrix, and the 
vector of the equivalent load has been carried out using the variational 
procedure.  

2 Matrix analysis of systems with semi-rigid connections 

Matrix analysis can be considered as a special case of the finite element method, 
a well known method of numerical structure analysis. In the matrix formulation 
of the force method and the deformation method, the basis is a member as one 
dimensional finite element. The system is discrete, composed of members- 
elements of the system, which are interconnected in the discrete points (joints of 
a system).  
     Fig. 1 shows the simplest model of a straight prismatic member of length l, of 
a constant cross section area, exposed to bending in the plane xoy of the local 
coordinate system. The member cross section moment of inertia is I and the 
material modulus of elasticity is E. If the influence of axial forces on the 
deformation of the member is neglected, the generalized displacements are 

transversal displacements ( i kv ,v ) and rotations  i k,   of the member ends, 

thus the element has four degrees of freedom, two at each joint. Generalized 
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forces are shear forces  i kT ,T  and bending moments  i kM ,M  in the joints 

i and k. The convention of the positive indications of displacements and forces is 
presented in fig. 1. 
 

 

Figure 1: Generalized displacement and forces at the member ends. 

     The relation between the vector of generalized forces and the vector of 
generalized member displacements is: 

R kq Q,                                                     (2) 

where: 

   T
1 2 3 4 i i k kq q q q q ,      

   T
1 2 3 4 i i k kR R R R R T M T M ,   

   T
1 2 3 4 i i k kQ Q Q Q Q T M T M ,   
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 
 
 
 
 
 

 

are the generalized displacement vector, the generalized force vector, the 
equivalent loading vector and the member stiffness matrix, respectively.  
     Besides direct determination of the stiffness matrix and the equivalent load 
vector based on the clear geometric and physical meaning of its elements, very 
often variational procedure for deriving, based on stationariness of the function 
of member potential energy is used in matrix analysis. 
     In the case of a straight member bending in plane, the relationship between 
displacement v(x) of whichever point of a member axis and the parameter of 
displacements at the member ends can be the most easily obtained starting from 
the homogeneous differential equation of bending: 

4

4
EI 0
d v( x )

,
dx

                                                  (3) 

whose solution can be written as a polynomial of the third order, which follows: 
2 3

1 2 3 4v( x ) x x x .                                         (4) 
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     Coefficients i (i=1,2,3,4) are defined from boundary conditions at the 
member ends. Interpolation functions in the shape of Hermit’s polynomials 
determined for a fixed-end member are given in Sekulovic 3. In the case of a 
member with semi-rigid connections at the i and k ends, the interpolation 
functions (2) can be derived from differential equation (1) and the boundary 
conditions. 
     When unit translation q1=1 is applied to the joint i of a member, while all 
other generalized displacements are equal to zero, what follows can be written 
according to fig. 1. 

1 1
1 1* *ik ik

ik ik ik ki ki ki ki ik
ik ki

b b
( ) ; ( )

a a
       

   
        
   l l

     (5) 

where ik and ki are the rigidity level of joint connections at the ends of a 
member, which can be determined numerically or experimentally. 

 

 

Figure 2: Physical meaning of the elements of stiffness matrix. 

     Boundary conditions for semi-rigid connections at the ends i and k of a 
member ik, from which coefficients i (i=1,2,3,4) appearing in expression (4) 
can be determined, are written in the following form: 

2 3
1 2 3 4

2
2 2 3 4

1 1 0
0 1 1

2 3

i k

i ik k ki

v( x ) v v( x ) v
x x

( x ) ( ) ( x ) ( )

   

          

           
             

l l l
l

l l
l l

  (6) 

Then, according to (4), the elements of the interpolation function matrix, when unit 
displacement q1=1 of the joint i, unit rotation q2=1 at the end i, unit displacement 
q3=1 of the joint k and unit rotation q4=1 of the joint k are applied separately, 
while all of the other generalized displacements are equal to zero, interpolation 
functions N*

1, N
*
2, N

*
3 and N*

4, respectively, can be determined.  
     Interpolation functions N*

m (m=1,..,4) represent Hermit’s polynomials of the 
first order and their diagrams are shown in fig. 2. In the limit cases when a 
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member is rigidly connected at its ends i and k (rigidly fixed-end member), that 
is 1ik ki   , expressions (8) have already known values (Sekulovic 3). 
     So, the matrix of interpolation functions can be shown in the following form: 

1 2 3 4N N ( x ) N ( x ) N ( x ) N ( x ) ,                      (7) 

where 

1

2 3
1 1 2

2 3
2 2

2 3
3 2

2
4

21
1

2

21

2 2

ik ki ik ki
q ik

ik ki ki ik ki ki
ik

ik ki ik ki
ik

ik ki ki ik ki k
ik ik

N ( x ) v( x ) ( ) x x x ,

l
N ( x ) x x x ,

l

N ( x ) ( )x x x ,

N ( x ) ( )x x

   


     


   


     
 

   
 



 


   
 


 

 
     

   
  

 
   

   
   

l l l

l

l

l l l

l
l

l
3

2
i x .
 l

l

  (8) 

 
Interpolation function N*m(x) represents an elastic line of a semi-rigidly  
fixed-end member due to generalized displacement qm=1 (m=1,2,3,4), while all 
of the other generalized displacements are qn=0, nm. 

2.1 Stiffness matrix of a semi-rigidly fixed-end member 

The stiffness matrix of a semi-rigidly connected member is obtained after the 
second derivatives of the interpolation functions have been determined and is as 
follows: 

1

2
1 2 3 4

30

4

EI d

N ( x )

N ( x )
k N ( x ) N ( x ) N ( x ) N ( x ) x ,

N ( x )

N ( x )




    





 
 

           
   




  (9) 

where: 

2 2
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2
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2 2
13 11

4EI

2EI
2

4EI

ik ik ki ki

ik ik ki ki ki ik ki ik ki ki ik

ik ik ki ki

k ,
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k k ,

   

          

   

    

       

     

    

       

       



 



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2
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        



       

     

          

  

    




 



2 2 22ki ik ik ik ki ik .            

 (10) 

When the axial forces effect on deformation is taken into account, the stiffness 
matrix of a semi-rigidly fixed-end member can be written as follows:  

11 12 13 14

22 23 24

33 34

44

EF EF
0 0 0 0

0

0

EF
0 0

sim.

k k k k

k k k
k .

k k

k

   

  


 



 
 
 
 
 
 
 
 
 
 
  

 



                       (11) 

2.2 Vector of equivalent load 

In the matrix analysis of structures, the external action along individual members 
can be replaced by concentrated load at the ends of the member. In the case of 
bending in plane, the load vector components are presented in fig.3 and they are 
equal to the negative values of reactions of elastically fixed members under 
given external action, which can be a load normal to the axis of the member, as 
well as temperature differences between temperatures on the upper and lower 
surfaces of the member. 
 

 

Figure 3: Vector of equivalent load. 
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                                  (12) 

The vector of equivalent load for a member with semi-rigid end connections is: 

0

d
l

T *Q p( x )N ( x ) x.                                        (13) 

For example, in the case of uniform load, where p(x)=p=const, it can be written 
in the following form: 
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 

 

  
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0
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




(14) 

After integration it becomes: 

2

1 1
1 0

56 1
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6
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6 112 2 2
3

4
6 0
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     
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        

    

 


(15) 

For other cases of loading, such as linear distributed load and concentrated force, 
concentrated moment vectors of equivalent loading are also derived (Zlatkov 
4). 
     In the case of the influence of constant temperature differences along the 
member axis the equivalent load vector is obtained as follows: 
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and after integration it is:  
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         (17) 

3 Some results of the static design of a system with  
semi-rigid connections  

The derived expressions for the stiffness matrix and equivalent load vectors can 
be incorporated in available software in order to enable structural design of linear 
systems with semi-rigid connections. In this paper the well-known computer 
program STRESS, intended for the linear elastic analysis of plane or space 
structures, is applied to illustrate the above presented theoretical approach.  
     The design of structures with semi-rigid connections using STRESS differs 
from the standard procedure only in commands containing data about members, 
i.e. it is necessary to form the stiffness matrices of members. Instead of giving 
cross-section characteristics of prismatic members (area and moment of inertia 
for the main axes) through the command MEMBER PROPERTIES 
PRISMATIC, properties of a member are described through the command 
STIFFNESS GIVEN, in which case the basic stiffness matrix elements for semi-
rigidly connected members are input directly. 
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     Load cannot be included by the command MEMBER LOADS as load 
distributed along the member length, but has to be represented as equivalent end 
load and input by the command MEMBER END LOADS in the following form: 

M START FORCE X  1  Y  2   Z  3  MOMENT X  4  Y  5  Z  6 

M END FORCE X  1  Y  2   Z  3  MOMENT X  4  Y  5  Z  6, 
where M is the notation of a member, FORCE X, Y, Z are the end forces in 
directions x,y,z with their numerical values 1, 2, 3 and MOMENT X,Y,Z are 
the end moments in directions x,y,z with their numerical values 4, 5, 6. 

 

 

Figure 4: Static scheme of a RC frame in the AMONT prefabricated 
structural system. 

     The real frame structure, under real loading (presented in fig. 4), is considered 
as an illustration of this application to frames with semi-rigid connections. This 
is a two-floor RC frame of the AMONT prefabricated structural system, Morava 
Krusce, Serbia, with a span of 24m, column cross section of 50x50cm and beam 
cross sections as shown at fig. 4. From the results of tests of the AMONT 
connections, Ristic 5, it has been found that the connection column to 
foundation is almost absolutely rigid and because of that the level of rigidity is 
adopted as 61=72=83==1 (fixed-end member) in the numerical example, 
while the connection beam to column behaves as 75% fixed, so it is adopted as 
12=21=23=32=45=54=41=53=27==0.75. 
     The computer program MKS2 is composed for the calculation of the elements 
of the base stiffness matrix for various combinations of the level of rigidity of 
connections at the member ends according to (10) (Zlatkov 4). The stiffness 
sub matrices required as input data in STRESS (Stankovic 6) for all members 
of the system (shown in fig. 4) are: 

1 2 3

580833 3 0 0 490974 2 0 0

0 1606 5 9639 4 0 1770 2 21242 1

0 9639 4 82547 2 0 21242 1 364022 7

* * *
. .

k k . . , k . . ,

. . . .

   
          
       

 

4 6 5

195403 0 0 195403 0 0

0 25837 3 56196 1 0 20997 5 42147 1

0 56196 1 162968 8 0 42147 1 122226 6

* * *
. .

k k . . ,k . . ,

. . . .

   
          
       
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7 8

2266666 7 0 0

0 32751 4 56684 8

0 56684 8 141712

* *
.

k k . . .

. .

 
    
  

 

The equivalent load vector for members 1, 2 is: 

12 21 23 32

12 21 23 32

330 93kN,

558 444kNm,

* * * *

* * * *

Q Q Q Q .

.

   

      M M M M
 

and the equivalent load vector for member 3 is: 

45 54 45 54277 92kN, 937 98kNm.* * * *Q Q . .     M M  

A diagram of bending moments is shown in fig. 5 for the adopted rigidity level 
of connections for the chosen AMONT frame. The values of bending moments 
in the case of absolutely fixed members in joints are shown in brackets. The 
differences between these two models are evident and they point out the fact that 
the calculation allowing for the rigidity of connections has is justified because it 
is closer to the real behaviour of the structure. 
 

 
 

Figure 5: Diagram of bending moments for =1.0 and =0.75 (in brackets 
are values for ==1.0). 

4 Conclusion 

In this paper the stiffness matrix and the vector of equivalent load for systems 
with semi-rigid connections are derived using the variation procedure on the 
basis of the deformation method. These terms can be incorporated in the available 
software in order to enable structural design of linear systems with semi-rigid 
connections. In this paper the well-known computer program STRESS, intended 
for the linear elastic analysis of plane or space structures, is applied to illustrate the 
presented theoretical approach. 
     The numerical example of the model with semi-rigid connections, which 
represents the real frame structure under real loading, is considered. Comparing 
the obtained static and deformation values with those for the model with 
standard connections, significant differences are observed, meaning that care has 
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to be taken in practical civil engineering design, particularly for the case of 
precast RC systems.  
     The presented procedure enables a designer to choose a model with different 
levels of rigidity of each member end in one joint, which can be determined 
experimentally, and to find out what the redistribution of the internal influences 
looks like depending on the real achieved level of rigidity of connections. This is 
particularly useful in the case of a very important structure, which can be tested 
after construction with the aim of finding out the real behaviour of the structure 
among all the levels of rigidity of its connections. Then the results of the tests 
can be used for designing a more realistic model that could be used in further 
analysis in the case of accidental loading, such as seismic forces, or in the case of 
changing of the purpose of the construction, when it is economically justified.  
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