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Abstract

The challenging task in computational engineering is to model and predict numeri-
cally the behaviour of engineering structures in a realistic manner. Beside sophisti-
cated computational models and numerical procedures to map physical phenomena
and processes onto structural responses, an adequate description of available data
covering the content of provided information is of prime importance. Generally,
the availability of information in engineering practice is limited due to available
resources. Far beyond the capability to specify crisp values, data are imprecise, dif-
fuse, fluctuating, incomplete, fragmentary and frequently expert specified. Beside
objective characteristics like randomness, available data are influenced by sub-
jectivity to a considerable extend. This impedes the specification of probabilistic
models with crisp parameter values to describe the uncertainty. Applying impre-
cise probabilities objective components of the uncertainty as well as subjective
components can be considered simultaneously. A sophisticated procedure to han-
dle imprecise probabilities provide the uncertainty model fuzzy randomness. Since
fuzziness, randomness, and fuzzy randomness can be processed simultaneously,
it is denoted as generalized uncertainty model. The models are demonstrated by
means of a numerical example to emphasize their features and to underline their
applicability.
Keywords: computational methods, numerical simulation, data uncertainty.

1 Introduction

The load-bearing behaviour of structures during lifetime is influenced by many
static and dynamic alterations. Whether a nonlinear numerical simulation of the
load-bearing behaviour leads to realistic results, depends on the quality and com-
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plexity of computational models and methods as well as the reliability of available
input data. In most cases the available input data can only be reliable described
as uncertain variables. Consideration of these data uncertainty in numerical anal-
ysis requires adequate computational models for processing uncertain data. Fig. 1
shows three examples for the computation of the load-bearing behaviour of struc-
tures under consideration of uncertain data. The result of loading test of a textile
reinforced concrete bridge is also drawn in fig. 1a) in order to validate the numer-
ical results. The structural behavior of an assembly of a vehicle body (fig. 1b)) of
a commercial car during a crash represents a dynamic problem. As displayed in
fig. 1c), also the destruction of structures by blasting can be simulated as dynamic
system under consideration of data uncertainty.
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Figure 1: Fields of application of uncertain structural analysis.

2 Modeling of uncertain variables

The parameters – for geometry, material, load etc. – of the numerical simulations
during the lifetime of structures are generally uncertain parameters. The following
mathematical models are available to describe uncertainty (see also fig. 2), whereas
fuzziness and randomness are considered as special cases of the generalized model
fuzzy randomness [1]. The choose of the model depends on the available data.
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Figure 2: Mathematical models of uncertainty.

The advancement of the traditional probabilistic uncertainty model enables the
additional consideration of epistemic uncertainty. Thereby, epistemic uncertainty
is associated with human cognition, which is not limited to a binary measure. Con-
trary to this, interval mathematics are limited to a binary assessment. Advanced
concepts allow a gradual assessment of intervals. This extension can be realized
with the uncertainty characteristic fuzziness, quantified by means of fuzzy set the-
ory.

If sufficient statistical data exist for a parameter and the reproduction conditions
are constant, the parameter may be described stochastically. Thereby the choose
of the type of the probability distribution function affects the result considerably.

2.1 Fuzzy variables

Often the uncertainty description for parameters is based on pure expert judgment
or samples which are not validated statistically. Then the description by the uncer-
tainty model fuzziness is recommended. The model comprehends both objective
and subjective information. The uncertain parameters are characterized with the
aid of a membership function �(x), see fig. 2b) and eq. (1). The membership func-
tion �x(x) assesses the gradual membership of elements to a set. Fuzzy variables

x̃ = {(x; �x(x)) | x ∈ X }; �x(x) ≥ 0 ∀ x ∈ X (1)

may be utilized to describe the imprecision of structural parameters directly as
well as to specify the parameters of fuzzy random variables.

2.2 Fuzzy random variables

If, e.g., reproduction conditions vary during the period of observation or if expert
knowledge completes the statistical description of data, an adequate uncertainty
quantification succeeds with fuzzy random variables. The theory of fuzzy random
variables is based on the uncertainty model fuzzy randomness representing a gen-
eralized model because of it joins both stochastic and non-stochastic properties.
A fuzzy random variable X̃ is defined as the fuzzy set of their originals, whereby
each original is a real-valued random variable X.
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Figure 3: Fuzzy realizations of a fuzzy random variable.

The representation of fuzzy random variables presented in this paper, bases on
the definition of fuzzy random variables according to [2]. The space of the ran-
dom elementary events Ω is introduced. Here, e.g. the measurement of a structural
parameter may be an elementary event �. Each elementary event � ∈ Ω gen-
erates not only a crisp realization like the displayed dots but a fuzzy realization
x̃(�) = x̃, in which x̃ is an element of the set F(R) of all fuzzy variables on R.
fig. 3 shows exemplarily five fuzzy realizations x̃ of a fuzzy random variable X̃.
Each fuzzy variable is defined as a convex, normalized fuzzy set, whose member-
ship function �x(x) is at least segmentally continuous. As special case also crisp
realizations as x̃4 = x(�4) may be considered. Accordingly, a fuzzy random vari-
able X̃ is the fuzzy result of the mapping given by

X̃ : Ω �→ F(R) (2)

Based on this formal definition a fuzzy random variable is described by their
fuzzy probability distribution function (fuzzy pdf) F̃(x). The function F̃(x) is
defined as the set of real-valued probability distribution functions F(x) which are
gradually assessed by the membership �F(F(x)). F(x) is the pdf of the original X
and is referred to as trajectory of F̃(x). As result, a fuzzy functional value F̃(xi)
belongs to each value xi, see fig. 4. Thus, F̃(x) represents a fuzzy function as
defined in sect. 3.1. A fuzzy probability density function is defined accordingly.

f̃(x) = {(f(x); �f(f(x))) | f ∈ f } ; �f(f(x)) ≥ 0 ∀ f ∈ f (3)
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Figure 4: Fuzzy probability density and cumulative distribution function.

3 Modeling of uncertain functions

3.1 Fuzzy function

In the case that parameters depend on crisp or uncertain conditions, they are con-
sidered as fuzzy functions x̃(̃t) = x̃(�̃, �̃, �̃) or fuzzy processes x̃(�̃). Variables
may be the time �̃, the spatial coordinates �̃ and further parameters �̃, e.g. tem-
perature. A fuzzy function x̃(̃t) enables the formal description of at least piece-
wise continuous uncertain structural parameters in (R). The following definition
of fuzzy functions is introduced. Given are

• the fundamental sets T ⊆ R and X ⊆ R

• the set F(T) of all fuzzy variables t̃ on the fundamental set T
• the set F(X) of all fuzzy variables x̃ on the fundamental set X.

Then, the uncertain mapping of F(T) to F(X) that assigns exactly one x̃ ∈ F(X)
to each t̃ ∈ F(T), respectively, is referred to as a fuzzy function denoted by

x̃(̃t) : F(T) ˜�→F(X) (4)

x̃(̃t) =
{
x̃t = x̃(̃t) ∀ t̃ | t̃ ∈ F(T)

}
(5)

In fig. 5 a fuzzy process x̃(�) is presented, which assigns a fuzzy quantity x̃(�i) to
each time �i.
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Figure 5: Fuzzy process x̃(�).
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For the numerical simulation the bunch parameter representation of a fuzzy
function is applied.

x̃(s̃, t) = {x̃t = x̃(s̃, t) ∀ t | t ∈ T} (6)

For each crisp bunch parameter vector s ∈ s̃ with the assigned membership value
�(s) a crisp function x(t) = x(s, t) ∈ x̃(t) with �(x(t)) = �(s) is obtained. The
fuzzy function x̃(t) may thus be represented by the fuzzy set of all real valued
functions x(t) ∈ x̃(t) with �(x(t)) = �(x(s, t)) = �(s)

x̃(t) = x̃(s̃, t) =
{(

x(s, t), �(x(s, t))
) | �(x(s, t)) = �(s) ∀ s | s ∈ s̃

}
(7)

which may be generated from all possible real vectors s ∈ s̃. For every t ∈ T each
of the crisp functions x(t) takes values which are simultaneously contained in the
associated fuzzy functional values x̃(t). The real functions x(t) of x̃(t) are defined
for all t ∈ T referred to as trajectories. Numerical processing of fuzzy functions
x̃(t) = x(s̃, t) demands the discretization of their arguments t in space and time.

3.2 Fuzzy random function

According to eqs. (2) and (4) a fuzzy random function is the result of the uncertain
mapping

X̃(t) : F(T) × Ω → F(R) (8)

Thereby, F(X) and F(T) denote the sets of all fuzzy variables in X and T respec-
tively [4]. At a specific point t the mapping of eq. (8) leads to the fuzzy random
variable X̃(t) = X̃(t). Therefore, fuzzy random functions are defined as a family
of fuzzy random variables X̃t.

X̃(t) = {X̃t = X̃(t)∀ t | t ∈ T} (9)

For the numerical simulation again the bunch parameter representation of a
fuzzy random function is applied. For each crisp bunch parameter vector s ∈ s̃ with
the assigned membership value�(s) a real random function X(t) = X(s, t) ∈ X̃(t)
with �(X(t)) = �(s) is obtained. The fuzzy random function X̃(t) may thus be
represented by the fuzzy set of all real random functions X(t) ∈ X̃(t)

X(s̃, t) =
{(

X(t), �(X(t))
) | X(t) = X(s, t);�(X(t)) = �(s) ∀ s | s ∈ s̃

}

(10)
which may be generated from all possible real vectors s ∈ s̃. Thereby, every t ∈ T
is simultaneously contained in the associated fuzzy random function X̃(t). The real
random function X(t) ∈ X̃(t) is defined for all t ∈ T and referred to as trajectory.
A numerical processing of a fuzzy random function X̃(t) = X(s̃, t) requires the
discretization of their arguments t in space and time.
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Figure 6: Fuzzy random process X̃(�j, �).

4 Fuzzy stochastic analysis

Fuzzy stochastic analysis is an appropriate computational model for processing
uncertain data using the uncertainty model fuzzy randomness. Basic terms and
definitions related to fuzzy randomness have been introduced, inter alia, by [2].
The formal description of fuzzy randomness chosen by these authors is however
not suitable for formulating uncertainty encountered in engineering problems. A
suitable form of representation with the scope of numerical engineering problems
is given with the so-called �-discretization by [1] and [3].

The numerical simulation under consideration of fuzzy variables and fuzzy func-
tions (fuzzy analysis) may formally be described by the mapping

M(t) : x̃(t) �→ z̃(t) (11)

According to eq. (11) the fuzzy variables x̃ and the fuzzy functions x̃(t) are mapped
to the fuzzy results z̃(t) with aid of the crisp analysis algorithm M(t). Every
arbitrary deterministic fundamental solution may be used as algorithm M(t). On
the basis of point and time discretization, fuzzy functional values of the function
x(s̃, �, �, �) are determined at points in space �j, time �i, and parameters�.

The numerical simulation is carried out with the aid of the �-level optimization
[3]. For the fuzzy variable ã1 and the fuzzy function x(s̃, �, � the input subspace
E� assigned to the level � is formed. By applying the mapping model M(�i) the
extreme values z�, l(�j, �i) and z�, r(�j, �i) of the fuzzy result variable z̃(�j, �i)
are computed. The points are interval bounds of the �-level sets and enable the
numerical description of the convex membership function of the fuzzy result vari-
able z̃(�j, �i). For the computation of z̃(�j, �i+1) at the time point �i+1 the proce-
dure must be restarted at � = 0 due to the interaction within the mapping model.

Fuzzy stochastic analysis allows the mapping of fuzzy random input variables
onto fuzzy random result variables. In the field of engineering fuzzy stochastic
analysis can be applied for static and dynamic structural analysis and for assess-
ment of structural safety, durability as well as robustness. Two different approaches
for computation of the fuzzy random result variables have been developed. The
first variant (fig. 7) bases on the bunch parameter representation of fuzzy random
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variables by [4]. The second variant utilizes the l�r�-representation of fuzzy ran-
dom variables. The variant to be preferred depends on the engineering problem,
the available uncertain data, and the wanted results [5].

Fuzzy analysis

Stochastic analysis

Deterministic computational analysisd

( )SA
F d

( )( )FA SA
F F d

Figure 7: Fuzzy stochastic analysis (FSA).

5 Numerical example

The numerical simulation is applied to a T-beam floor construction. A section
of the T-beam floor construction with two beams is shown in fig. 8. The time-
dependent reliability in relation to serviceability limit state is computed with the
aid of FSA. The serviceability limit state is defined with the maximum displace-
ment of v3 = 3.0 cm in the middle of the beam. Both fuzzy random and real ran-
dom input variables are taken into consideration.
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Figure 8: Geometry, material, and FE model.

For the deterministic computational analysis of the FSA, the physically non-
linear analysis with hybrid finite folded plate elements is applied. RC structures
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with textile strengthening are described appropriately with the multi-reference-
plane model (MRM). The MRM is utilized to describe multi-layered composite
materials with a discontinuous multi-Bernoulli-kinematics [6]. A MRM element
comprises k+1 layered sub-elements and k interfaces. The sub-element i with its
corresponding reference plane RPi (i = 0, . . . , k) is subdivided into si sub-layers
(concrete and steel sub-layers or fine-grained concrete and textile sub-layers). In
order to describe the composite structure comprised of reinforced concrete and
textile strengthening, different nonlinear material laws are applied to the individual
sub-layers of concrete, steel, and textile. Endochronic material laws for concrete
and steel are utilized for general loading, unloading, and cyclic loading processes,
and taking into account the accumulated material damage during the load history.
In the case of cyclic loading, the textile-reinforced fine-grained concrete layers
are split into sub-layers of fine-grained concrete and of textile reinforcement. The
endochronic material law for concrete is adapted to the fine-grained concrete. A
nonlinear elastic-brittle material law is used for the textile reinforcement.
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Figure 9: Fuzzy process d̃K.

The structure is discretized by means of 156 MRM elements. The beams are
modeled with 12 concrete layers and the plate part of the floor is using five concrete
layers. The steel reinforcement is specified as an uniaxial smeared layer in each
case. Crack formation, tension stiffening, and steel yielding are taken into consid-
eration. The T-beam floor was designed for a dead weight g of the floor construc-
tion, an additional load g1, and a live load p1. Due to a conversion, it is necessary
to dimension the floor additionally for a live load p2 and point loads P. For this rea-
son textile strengthening is applied to the underside of the construction (fig. 8). The
loads g1, p1, and p2 are modeled as uniformly distributed superficial loads. The
point loads P are modeled as nodal loads of magnitude P = 30 kN. The live load p1

is modeled as a real random variable (Gumbel distribution with a = 2.565 and b =
5.699) and the live load p2 as fuzzy random variable (Gumbel distribution with the
bunch parameters �p2 = 0.5 kN/m2 and Ẽp2 =< 5.7, 6.0, 6.3 > kN/m2). The
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concrete compressive strength �c is specified in this case as a Gaussian distributed
fuzzy random variable (�̃�c =< 2.0, 2.5, 3.0 > N/mm2 and E�c = 20 N/mm2).

The fine-grained concrete tensile stress �t = (0.3 + c)�2/3
fgc is modeled as ran-

dom variable by means of the Gaussian distributed parameter c with Ec = 0 and
�c = 0.01.

The time-dependent reliability in relation to serviceability limit state requires
the consideration of deteriorating effects. The deterioration is influenced by sev-
eral factors, which are not precisely known [7]. This information deficit leads to
uncertainty and at the end to an uncertain service life. The uncertain deterioration
is simplified by the fuzzy process d̃K = e−

∫
�(�, s) d� which acts on the global

stiffness matrix, see fig. 9. The processes �(�, s) in this example are determined as
�(�, s) = 0.0001 if � ≤ �0, and 0.0001 + 1/6000(e0.02·�·s − e0.02·τ0·s) if � > 0
with �0 = 20 years and the bunch parameter s ∈ s̃ =< 0.9, 1.0, 1.1 >, see fig. 9.
As results of the uncertain numerical simulation, fig. 10 shows the time-dependent
fuzzy reliability.

0

0.010

0 20 40 60 80

P [10 ]
-3

�(P)

1

0.
5 1.

2 3.
2

0.005

0.015

re
li

a b
il

it
y

P
(ô

)

time [a]ô

Figure 10: Time-dependent fuzzy reliability.
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