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Abstract 

The aim of the paper is to establish the basics of a model in order to help the 
evaluation of the parameters of the heat transfer and energy consumption in the 
case of the walking beam furnaces for rolling mills. The heating process of 
alloyed and high-alloyed steel billets in view of processing by rolling is 
analyzed. The temperature gradients, producing internal thermal stresses in the 
heated material, are a problem that influences the design of the aggregate. If the 
values of the thermal stresses exceed the tensile strength they can lead to the 
destruction of the finished product. The thermal stresses are mostly due to the 
poor correlation of heating process of the billets in typical furnaces for rolling 
mills with mechanical and thermal characteristics of the heated material and with 
the dynamic of the gases. Using physical and mathematical modelling, there are 
established correlations between the thermal process, the dynamic of the gases 
and the particularities of the furnace in order to obtain the conditions for 
modelling a variable geometry of the aggregate. The particularities of the steels 
and of the furnace are analyzed in order to reach an optimum of the geometrical 
model for the thermal space. Physical and mathematical models are used to 
establish a new variable geometry. Saving energy and metal, due to the chemical, 
thermal and dynamic processes, means having a cleaner environment. A new 
disposal system of the burners inside the furnace and a new variable geometry of 
the thermal space can lead to energy and metal savings.  The conclusions of the 
study are applied for a new design of the furnace, including dynamic aspects of 
the geometry of thermal space. 
Keywords: furnace, metallurgy, modelling, dynamic of the gases, thermal space. 
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1 Temperature and thermal stresses in steel billets 

A study of the mechanism of thermal stresses and the establishing of the critical 
thermal values was imposed in order to include its influence on the mathematical 
remodelling of the thermal space [1–3]. 

1.1  The case of the cylindrical billets 

Using the Bessel functions, and having the notes:  
θc: furnace temperature 
θmi: temperature in the centre of the billet  
θm0: initial temperature of the billet 
θms: temperature at the surface of the billet (its value is determined subject to 
upper or lower surface). 
θmf : final temperature of the billet 
 
It was deduced for a cylindrical billet: 

- temperature for the surface:  
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Temperature’s equation in the section of the cylinder may be expressed by: 
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Only the first component of the series was used, so, it is necessary to put the 
condition: a

R
⋅ ≥τ

2 0 3, , (a: thermal diffusivity, τ: time). 

     Examples of the application of the model for the temperatures are presented 
in figures 1–4. 
     For information about the values of the thermal stresses in the round section 
billet it is used the Bessel function J0(n1R) [4, 5]. If “R” is the cylinder radius and 
“r” the current radius, for r = R the stresses σtgs and σazs at the surface of the billet 
are: 
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Figure 1: Temperatures in the 
cylindrical billet 
(140mm).  

Figure 2: Analysis of the 
temperature in the 
cylindrical billet. 
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Figure 3: Detail for the 

temperature at the 
surface (r/R=1)     
(tm1 in figure2). 

Figure 4: Detail for the 
temperature in the 
centre (r/R=0) (tm0 in 
figure 2). 

     For r=0, in the axis σtgax and σrax are: 
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For whole section of the cylinder, if the heating is symmetrical (∆θ1=∆θ2): 
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β: coefficient of dilatation 
E: Young module 
ν: Poisson coefficient 

centre, 
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ν1, φ1: series of Bessel function 
∆θ: temperature gradient 

1.2 The case of the rectangular section billets 

In the case of billets with rectangular section with the dimension “X”, the 
admitted thermal stresses reported to the variable (x) axis, equations (8) and (9) 
[6] are proposed:  

- axial and tangential stress in the axis of the billet, σxax and σyax: 
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- axial and tangential stress at the surface of the billet, σxs and σys: 
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The values of the thermal stresses in whole section of the rectangular billet are: 
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1.3 Influence of the thermal regime on the furnaces’ design 

In figure 5 is explained the relation between the heating conditions necessary for 
a specific category of steels and the geometry of the vault. 
     The model that connects the thermal stress and the thermal field of the 
aggregate is obtained by simulation on the computer. 
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Figure 5: Maximum admitted temperature of the aggregate (θc-admis) in 
concordance with the maximum admitted temperature gradient 
∆θadmits (billet radius 300mm; if the temperature of the aggregate is 
1300oC the values are θs real, θi real, ∆θreal). 
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Figure 6: Basic profile of the vault (beginning temperature: 750o C). 

     The results concerning the modelling of thermal fields in the furnace are used 
as a component included to the re-modelling of the thermal space of the 
aggregate.  
     Starting from the diagrams that show the thermal regime for the aggregate, it 
was proposed to use computer modelling, see the design of the vault of a furnace 
(figure 6) [7]. 

2 The problem of energy and mass transfer 

In order to efficiently manage the mathematical model that describes the 
geometry of the thermal space of the aggregate, it is necessary to know the 
relations between the temperature of the steel, the temperature of the thermal 
isolation and the temperature of the flue gases.  
     The thermal output ηt, gives the energetic efficiency. It is strongly connected 
to the energy transfer problems. Equation (11) [7] was established  
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where are used the notations: 
voa: theoretical volume of air combustion related to the thermal unit of the fuel 
[m3

N/103 kJ] 
λa: air combustion excess coefficient 
θa: air combustion temperature, oC 
ca: thermal capacity of the air, kJ.m-3

N
.K-1  

cp: thermal capacity of the flue gases, 
Hi: thermal energy of the fuel, kJ.m-3

N
  

     Defining “the factor of the fuel” [7] as: K
c
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The connection between the temperature of the gases, the temperature of the 
thermal isolation and the temperature of the billets is described by the equation: 
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αgpm: heat exchange coefficient from the gases to the metallic material, if it is 
considerate that the temperature of the gases is the same with the temperature of 
the thermal isolation, kJ.m-2.h-1.K-1  
αpm: heat exchange coefficient by radiation between the thermal isolation and the 
metal, kJ.m-2.h-1.K-1 
αgp: radiation heat exchange coefficient between the gases and the thermal 
isolation, kJ.m-2.h-1.K-1 
αc : convection heat exchange coefficient between the gases and the thermal 
isolation, kJ.m-2.h-1.K-1 
θg: temperature of the flue gases, oC 
θp: temperature of the thermal isolation, inside the furnace, oC 
ε: thermal emissivity coefficients 

S
s=χ , 

where 
s: heated surface of the billets, m2  
S: surface of the thermal isolation, m2 
qex: the conduction thermal flow 
 
     Referring to equation (13) the complex heat exchange in the furnace is 
characterized by: 
- the heat exchange coefficient between the thermal isolation and the billets 
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- the heat exchange coefficient between the flue gases and the billets 
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     For particular cases, more friendly forms of the equations may be established. 
For example, if the fuel is the natural gas, the temperature of the flue gases is: 
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Equation (16) can also have different forms according to the model of the 
furnace. 
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3 Dynamic of the gases in the aggregate 

In order to obtain the most adequate thermal regime, it is necessary to assure an 
advanced circulation and recirculation of the gases and to have permanently 
under control the parameters of their dynamic. 
     Certainly, a study using a physical model is also necessary. In order to 
accomplish this study and to use the obtained results for the real case it is needed 
to establish some non-dimensional criteria. The theory of similitude was applied. 
     In figure 7 the physical model for the walking beams furnace and an 
experimental result concerning the dynamic of the gases is presented.  
 

 

Figure 7: The experimental physical model for the recirculation of the flue 
gases in the case of the walking beam furnace. 

     The recirculation of the gases has some particular characteristics explained by 
the geometrical limits of the thermal space. In figure 8 (senses 2 and 2’), the 
circulation is at the superior surface of the billets and produces a secondary 
degree recirculation.  
     The debit recycled in the “primary heating zone” and “secondary heating 
zone” can be calculating using equation (19).  

m m
X
rr

f= ⋅ −






0

0

0 2 1,                                          (19) 

mr: mass of recycled gases  
m0: masse of the gases at the exit from the burner  
r0: burner’s radius 
     As results of experiments and mathematical modelling it was remarked the 
influence of the temperature on the general dynamic of the gases in the 
continuous linear furnace (walking type furnace, figure 8). 
     It is also to remark that, the abstraction of the flue gases do not have an 
uniform distribution; the maximum value of the speed is reached in the central 
tap holes, simultaneously with low values of the speed thru the lateral tap holes 
(figure 9). 
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Figure 8: Influence of the temperature and of 

the jet of the gases on the dynamic 
in the furnace depending on the 
heating zone. 

Figure 9: Speed distribution 
in the tap holes of 
the furnace. 

     If the temperature has a higher value at the superior levels of the furnace, 
comparing to the hearth level, it will influence differently the dynamic regime in 
the two zones (figure 8) 
     Introducing and applying some hypothesis about the very closed values for 
the thermal capacity at the level of the primary and recycled jets, the recycling 
coefficient can be expressed.  
     The dependence of the dynamic recycling coefficient K on the temperatures is 
presented in figure 10. 

4 Design of the thermal space of the furnace 

The dynamic design of the furnace obtained when applying the mathematical 
model may assure a 41% to 55% decrease of heating time, (from 153minutes to 
90minutes), corresponding to a similar decrease of energy consumption [8].  
 It is also possible to reduce the oxidation of the steel till 0.8÷1.4%. 
     Practically, it means to propose a variable geometry of the thermal space. 
The basic schema corresponding to the thermal diagram is presented in figure 11. 
     The model includes some particularities for the geometry of the furnace: 
• there are three groups of burners: 
- group A1 using air from the heat recovery R1 which can assure a higher 

temperature at the superior level of the furnace 
- group A2: burners using air from R2 in order to assure a lower temperature 

at the inferior levels of the furnace  
- group of special AFRP burners 
- group A3: are in function only in special conditions, in connection with the 

geometry of the thermal space in the first heating zone 
• groups A1 and A2 are connected to the tap holes system in order to control the 
dynamic regime of the gases 
• the exit of the flue gases is at the level of the vault  
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Figure 10: Establishing of the temperature of the mixed jets ta, using the 

recycling coefficient. 

 
Figure 11: A basic schema for modelling the geometry of the continuous 

furnace (walking beam furnace). 

• the evacuation system of the gases assure the condition θb<θv  in the first zone 
of the furnace 
• in order to assure the dynamic and thermal regime, the geometry of the vault 
(especially in the first zone) is decisive  
• the low oxidation level of the steel is also highly influenced by the profile of 
the vault in the first zone  

5 Discussion 

The results of the studies about the thermal stresses are the base of the re-
modelling of the geometry of the thermal space of the furnace. From this, the 
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aspects regarding the design of the vault are essential in determining the dynamic 
and the thermal solutions. 
     If a various range of steel with different thermal properties is heated in the 
furnace, a variable geometry of the thermal space will bring important economies 
of energy and metal. 
     Starting from the diagrams of the variation of maximum admitted temperature 
of the furnace it is possible to model the vault of the continuous working furnace. 
     Using the proposed general solutions for the remodelling of the thermal 
regime it can be obtained a better control of the temperatures in each heating 
zone of the furnace and to correlate it with the necessary temperatures of the 
billets. It is also possible to control the temperature of the thermal isolation, and 
by this to save thermal energy. 
     Using the results of the modelling, it is possible to control the flue gases 
temperature in each heating zone of the furnace in connection with the 
temperature of the steel.  
     The basics of the general solution of the model allowed to establishing the 
disposal mode of the burners in connection with the design of the furnace and the 
necessary output. The design of the furnace can be also changed having in view 
the thermal and the dynamic particularities of the flow gases. 
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