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Abstract 

The present study performs a block refinement technique for the simulation and 
computation of flows inside domains of arbitrary shaped bounds. The 
discretisation of the physical domains is achieved by the use of Cartesian grids 
only. The curvilinear geometries are approached in Cartesian co-ordinates by 
Cartesian grid lines. In order to achieve the best approach of the original contour, 
we choose the saw tooth method to determine the appropriate approximated 
Cartesian points. The refinement method is based on the use of a sequence of 
nested rectangular meshes in which numerical simulation is taking place. The 
method is applied for the solution of the incompressible Navier–Stokes 
equations, for steady and laminar flows, based on a cell centre approximation 
projection. We present the numerical simulation of internal and external flows 
for different values of a Reynolds number. The utility of the algorithm is tested 
by comparing the convergence characteristics and accuracy to those of the 
standard single grid and BFC grid algorithms.  
Keywords: grid generation, incompressible flows, nested grids, subgrids, 
numerical simulation.  

1 Introduction 

When the body-fitted structured curvilinear (BFC) grid approach came into 
solving flow problems, the use of Cartesian grids was almost abandoned. The 
benefit of BFC is that the boundary surface is fitted with a new co-ordinate line 
based on the body contour [1]. The main problem is that if you have to simulate 
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a complex multiple connected domain with sharp boundaries it is difficult to 
automatically generate a grid of good quality. Current algorithms in BFC are still 
strongly dependent on the problem to be solved and require a lot of 
computational and human time effort. So in order to avoid these partial 
problems, there has recently been a great development in Cartesian grids. In the 
Cartesian grid methods the numerical grid is generated automatically, containing 
simplified data structures and formulations for the numerical fluxes. The 
Cartesian grid generation was used by Clarke et al. [2] and Falle and Giddings 
[3] to calculate steady compressible flows [4]. Coirier and Powell [5] used a 
Cartesian methodology for steady transonic solution Euler’s equations and in [6] 
performed accuracy and efficiency assessments of the method. It is a cell-centred 
method with an interesting treatment of boundary conditions. Smith and 
Johnston [7] develop a grid generation procedure that uses a Cartesian embedded 
unstructured approach for complex geometries. 
     Adaptive mesh refinement algorithms have been used extensively to solve a 
variety of problems in hyperbolic conservation laws and have more recently been 
extended to incompressible flows [8–10]. Wang [11] develops a quadtree-based 
adaptive Cartesian/Quadrilateral grid generator and flow solver based on cell 
cutting [12–14], and Deister et al. [15] presents a refined Cartesian grid based in 
octa-tree. 
     In the present paper we present a Cartesian grid approach based on a saw-
tooth method for the curvilinear geometries bounds approximation. This 
technique is based on Chai et al. [16], where they present the saw-tooth Cartesian 
method for the heat transfer problem on a complex geometry. The emphasis is 
placed to present an improved accurate Cartesian approximation of curvilinear 
geometries and the corresponding fluid solution in comparison with those of the 
body fitted structured curvilinear method. We apply a nested refinement 
algorithm based on that of Jesse et al. [17], Martin and Collela [9], and Berger 
and Collela [18], in which refined regions are organized into unions of a small 
number of nested rectangular blocks. Refinement is performed in space and the 
method is cell-centred finite volume, which allows the use of a single set of cell-
centred solvers. It is applied to steady, incompressible flow fields for the Navier–
Stokes numerical simulation [19]. The flow solver is based on a pseudo-
compressibility technique (Pappou and Tsangaris [20]). 

2 Grid generation 

The main problem in Cartesian grid generation for a curvilinear geometry is that 
we have to use a technique to create an approximate Cartesian bound as close to 
the initial curvilinear bound as possible. The new approximate bound is parted 
only by the use of grid lines, on either the x or z-axis. The method used is called 
saw-tooth and it has been chosen as the most appropriate for the finite volume 
cell-centered numerical simulation of flow fields. 
     In order to apply the saw tooth approximation we project the original contour 
of the curvilinear geometry onto a Cartesian grid. This complex contour is 
described by a set of data points on either the x or z-axis. The second step of the 
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procedure is the specification of the approximated Cartesian points for the 
representation of the geometry by using the saw tooth method. If an original data 
point is on the x-axis, we calculate the distance between this and its 
neighbouring grid nodes in the same direction (x). According to the smallest 
distance we choose the corresponding grid node as the Cartesian approximated 
point [21]. 

2.1 Mesh refinement technique 

The main problem of the above method is that if you want to decrease the 
approximation error with the initial curvilinear geometry, you have to cluster the 
used uniform grid and in many cases a huge grid size is needed. In order to 
overcome this problem we choose a block refinement technique by the use of a 
hierarchical structured grid approach. The method is based on using a sequence 
of nested rectangular meshes in which numerical simulation is taking place. We 
simulate the domain based in as many refined grids as we need.  
     A physical domain’s point can be contained in several grids. The solution of 
the variables in this point will be taken from the finest grid containing the point. 

2.2 Block-nested refinement algorithm 

The proposed nested algorithm contains several levels of grids. We create a 
coarse level at the beginning and we solve the domain. We name this coarse 
level m=0 and each next refined sub-grid is named m+1. The coarsest grid is 
uniform in the x and z direction respectively. We define an integer refinement 

factor, such as that in [9], 11 //   mmmm dzdzdxdxI . For convenience the 

above factor should be a second power. 
     As we have created the coarse grid we simulate the flow field and calculate 
the variables. We have already defined the limits of the refinement levels and we 
proceed with the calculation to the next refinement level. The sub-grids bounds 
must lie on a grid line of the previous level grid. As we use staggered grids and 
the variable values are expressed on the cell’s centre, we consider pseudo-cells 
all around the physical domain and the sub-grids too. In this way we estimate the 
variables using interpolation between pseudo-cells and their neighbour cells. The 
pseudo-cells of each sub-grid m are lying on the level m-1. We continue this 
process for all the sub-grids. As we have fulfilled the simulation in all sub-grids 

and we have the flow field results at maxm  level, we resolve the problem in the 

coarser levels again to ensure conservation. In this step of the procedure we have 
to be careful because we can apply the numerical simulation only in rectangular 
sub-grids. We find a new solution, this time by the influence of the fine levels. In 
addition we must satisfy both Dirichlet and Neumann matching conditions along 
coarse–fine and fine–coarse interfaces. That is why we give the velocity values, 
but we solve for pressure.  
     The grid algorithm is comprised of multiple levels. As we have already 
created the Cartesian approximate geometry bound, the grid generation and the 
numerical simulation procedure is as follows: 
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 Create a coarse Cartesian grid (level m=0), simulate and solve the flow 
field. 

 Transfer the solution to the next grid level (m+1). 
 Solve the flow field on the new sub-domain. 
 Transfer the solution to the next level (m+2) with new boundary 

conditions. 

      (Repeat the procedure for all the levels)  

 Simulate and solve the flow on the last sub-domain (level mmax). 
 Transfer the solution to the coarser grid level (mmax-1) as its boundary 

conditions. 
 Solve the sub domain with the influence of the refined grid results. 

      (Repeat the procedure for all the levels) 

 Solve the coarsest-initial sub domain (level m=0). 
 Take the solution of the variables by the finest grid.  

2.3 Boundary conditions 

If the grids are adjacent, the boundary conditions of one grid are provided by the 
other. If they are not adjacent, the boundary conditions are established by either 
the coarser level condition or by the physical boundary condition.  
     Let us consider that we have already solved into the initial coarse grid and we 
have to continue the numerical simulation into a sub-grid. In order to specify the 
boundary conditions at coarse grid and sub-grid interfaces, we represent 

),(1 kiu m  and ),(1 kiwm , the values of the velocity components, on the sub-

grid pseudo-cells. ),( nlu m  and ),( nlwm  are the corresponding coarse grid 

values into the physical domain. Every interpolation takes place either on the x-
axis or on the y-axis. If we consider that we apply the new velocity values on the 
x-axis, (figure 1), interpolation is applied as follows: 
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Also,  

),1(...),1(),( 111 kIiukiukiu mmm   .                (2) 

Therefore, if the refinement factor is set to be equal to 2, (I=2), the above 
relation becomes as below: 

),1(),( 11 kiukiu mm   .                                 (3) 
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Figure 1: Linear interpolation in order to transfer the velocity values to a 
coarse–fine interface. 

The relation between i  and l  is: 

12  il .                                               (4) 

As we have assigned the velocity values on the boundary bounds, we must apply 
a condition for the pressure. Assuming that we simulate for an axisymmetric 
flow, the pressure vertical derivative at the interface is estimated as follows: 





























































y

v
v

x

v
u

y

v

x

v

y

v

yy

v
n

y

u
v

x

u
u

x

u

y

u

yy

u
n

n

p

y

x

)
1

(
Re

1

)
1

(
Re

1

22

2

2

2

2

2

2

2

,           (5) 

where 
n

p




 is the pressure vertical derivative, Re the Reynolds number, xn  and 

yn  the components of the unit normal vector and u and v the axial and the 

vertical velocity components respectively.  
     In order to transfer the boundary values through a fine–coarse interface, we 
once more apply interpolation and we estimate the pressure vertical derivative as 
above. With the same symbols, interpolation between the velocity values is: 
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where I is the refinement factor.  

3 Results  

In order to examine the accuracy of the above method, we present the numerical 
simulation of the flow field inside a stenosed tube and around a symmetric airfoil 
NACA0012. We chase out the accuracy of the results comparing them with the 
correspondence of a Cartesian uniform grid with the same base grid size.  

3.1 Steady flow inside a stenosed tube 

In stenosed tubes, the appearance of large recirculating zones, the high gradients 
of the wall shear stresses and the strong increase of the pressure drop are the 
main effects depending on the severity of the stenosis.  
     The grid generation and the numerical method that was described above were 
used for the calculation of steady flow inside a stenosed tube. The stenotic area is 
0.25% of the inlet area. The numerical refinement grid used is level=1 and I=2, 
(base grid: 401x26).  
     The Re number, which was based on the maximum inlet velocity and the 
radius of the inlet, was set equal to 100. The boundary conditions are 
summarized as above in table 1. In order to control the accuracy of the proposed 
method, we simulated the current flow field by the use of two uniform grids: a 
curvilinear one sized 501x31 and a uniform Cartesian grid sized 401x26. A part 
of the block nested numerical grid is presented in figure 2, where it is shown that 
the whole domain is parted into four sub-grids. Two velocity profiles along the 
flow field are presented in figure 3 and the pressure distribution along the 
stenosed tube is presented in figure 4.  
     It seems that the convergence between the block nested algorithm results and 
the curvilinear grid results is very satisfied, while the Cartesian uniform grid 
results present greater relative error. It is important to note that we managed to 
approve the numerical results by the use of only one sub-grid with a refinement 
factor equal to two, around the stenotic area. 
 

Table 1:  Boundary conditions. 
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Figure 2: Part of the used block nested numerical grid 401x26, L=1, I=2. 
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Figure 3: Velocity profiles along the flow field. 

 

Figure 4: Pressure distribution along the stenosed tube. 

3.2 Flow around airfoil NACA0012 

In the second test case we simulate the flow field around a symmetric airfoil, 
(figure 5). It is impossible to solve the airfoil domain using a uniform Cartesian 
grid, because in order to achieve the desired geometry bound approximation a 
huge number of Cartesian grid cells would be needed. In order to avoid the 
above memory problem, we apply the block-nested algorithm of two grid levels 
(m=2), while the integer refinement factor is equal to four (I=4). The base grid 
size is 61x51 and the whole computational domain consists of 25586 cells. The 
corresponding uniform Cartesian grid comprises 796416 cells and its use for the 
airfoil numerical simulation is time-consuming and unprofitable. Regardless of 
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the time problem, we solved the fluid flow around the airfoil using a 320x315 
uniform Cartesian grid and we realized that the use of the 61x51 refined grid 
decreases the CPU time by 93%.  
     We applied free stream conditions and we gave the velocity value for all the 
boundary limits except of the [CD] limit (figure 5), where we the pressure value 
is given. The angle of attack is equal to 0 and the Reynolds number is 100. We 
present two axial velocity profiles along the flow field (figure 6). The 
comparison took place by corresponding results with [22].  
 

 

Figure 5: Physical domain around airfoil NACA0012. 
 

   

Figure 6: Axial velocity profiles of fluid flow around the airfoil, Re=100. 

4 Conclusions 

This paper proposes a method for the approximation of complex curvilinear 
geometries by using Cartesian co-ordinates only. In order to succeed the best 
geometry approximation close to the initial curvilinear bound, we applied the 
saw-tooth method in combination with a grid block refinement technique. We 
use a cell centre discretisation and the boundary transfer is demonstrated in the 
interfaces by the use of interpolation.  
     We presented the numerical simulation of two flow fields: both inside a 
stenosed tube and around a symmetric airfoil. At the stenosed tube numerical 
simulation, we created the approximate Cartesian geometry by a saw-tooth 
method and we applied a block-nested grid with one level and a refinement 
factor equal to two. We solved the incompressible Navier–Stokes equations into 
four separate sub-grids using linear interpolation in order to transfer the 
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boundary conditions. A comparison of the axial velocity results took place, 
between the block Cartesian grid, the uniform Cartesian grid and the curvilinear 
grid, with satisfied results. By the use of the block-nested grid we succeeded to 
improve the result’s accuracy towards the corresponding uniform Cartesian grid.  
     On the second test case we examined the fluid flow around a NACA0012. 
Airfoils are ‘thin’ bodies and the use of a uniform Cartesian grid is very 
unprofitable and sometimes the algorithm is impossible to converge. So the use 
of the block-nested grid is necessary and provides a lot of advantages according 
to the CPU memory and converging time. A comparison of the axial velocity 
results took place between block Cartesian grid and bibliography results. The 
differences appearing between the profiles are due to the different simulation 
methods, types of grid, residuals and certainly to digitization error. By the use of 
the block-nested grid we succeeded in improving the converging time results and 
sometimes decreasing them by over 90%. It is important to note that the flow 
rate is of concern, in both of the above test cases, in spite of the differences 
depicted in the above velocity profiles.  
     The above numerical solution proves that the Cartesian block refinement 
method is stable and accurate enough, regardless of the fact that the produced 
Cartesian bound is less accurate than the curvilinear one. The block Cartesian 
method is simple and gives a convergent and grid independent solution for 
complex curvilinear geometries, also accomplishing a reduction in CPU memory 
and the simulation computing time effort.  
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