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Abstract

In situ measurements of energy consumption in test cells are often carried out to
predict the thermal performance of the insulating product. Design engineers need a

of the test cell at any location world wide and also permit comparison of differ-
ent insulation products. Towards this goal, we present GAP, Global Assimilation
Process which is a neural network based meta modeling technique. The key fea-
ture of this method is the zero memory minimization routine and a regulariza-
tion technique that avoids over training of the network. We present the theory and
applications of GAP software to predict thermal performance of mineral wool and
multi-foil insulation products. GAP based meta models are used to predict thermal
performance of these insulation products at different test sites. It is shown that the
properly trained neural network model of GAP can accurately predict the energy
consumption in test cells of any location.
Keywords: In situ measurements, neural network, GAP, multifoil insulation.

1 Introduction

Thermal properties of insulation materials such as U-value or R-value are mea-
sured using controlled laboratory tests that employ simplistic specimen geome-
tries and boundary conditions [1, 2] or by established standards [3]. However, a
detailed report from the Building Research Establishment Ltd. [4] shows the con-
siderable differences amongst standard calculation method such as [3] and in situ
measurements. The difference arises from the fact that the laboratory conditions or
standards does not simulate factors such as wind, solar radiation, relative humidity,
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tool that can use available in situ measurements to model the thermal performance
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infiltration, etc., which influence in situ performance. Hygrothermal performance
modeling softwares which claim to model these factors are inadequate as they
employ simplifying assumptions for wind profiles and solar radiation. Realistic
estimation of in situ performance of insulation products requires a tool that can
couple the model and the measured data. Moreover, such model should be com-
putationally inexpensive so that design engineers can use it to model the thermal
performance of the test cell at any location world wide and also permit comparison
of different insulation products. Towards this goal, we present Global Assimilation
Process (GAP) which is a neural network based meta modeling technique. In sec-
tion 2 we give a description of GAP, whose key features are use of algorithmic
differentiation to develop a low-memory Levenberg-Marquardt algorithm and the
use of a regularization technique; by which it provides a neural networks that do
not ”over fit” the given data. Using GAP, the neural network is trained to predict
in situ consumption data corresponding to various meteorological conditions. The
in situ data collection strategy and test set up are discussed in section 3. Finally in
section 4 it is shown that properly trained neural network can accurately predict
the energy consumption in test cells located at other geographic locations.

2 GAP theory

The core idea of GAP is to build neural network based model of the energy con-
sumption in test cells as a function of meteorological parameters. The model param-
eters are tuned by minimizing the difference between the measured and simulated
consumption. We assume that energy consumption is a continuous function ψ
defined from R

nI (nI input variables, for e.g. meteorological parameters) into
R

nO (nO output variables, for e.g. energy consumption). In following subsections
we describe neural network model and the training algorithm.

2.1 Neural networks

We consider three-layer neural networks, as they are universal approximators for
continuous functions [5–7]. The first layer is the input layer and contains nI + 1
cells corresponding to the nI input variables, and an additional cell which is called
the bias. The second (or intermediate) layer is called the hidden layer, consists of
nH hidden cells, nH usually being increased with the complexity of the function
to be approximated. The third layer is the output layer and contains nO cells. Each
cell cj of one layer is connected to each cell ci of the following layer, and each of
these links is associated to a weight wij . If we denote by xl

i the state of cell ci of
the layer l, then the state of cell cj of the second layer is given by

x2
j = f

((
nI∑

k=1

w1
jkx

1
k

)
+ w1

j,nI+1

)
(1)

where f is the activation function given by eqn. (2).

f(z) =
1

1 + e−z/10
∀ z ∈ R (2)
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This means that some basis functions are built between the input and hidden layers.
The state of cell ci of the output layer is finally given by a linear approximation in
this basis

x3
i =

nH∑
j=1

w2
ijx

2
j (3)

We will now consider the following vectorial notations:

• X1 =
(
x1

1, . . . , x
1
nI

)T
is the input vector, X1 =

(
x1

1, . . . , x
1
nI
, 1
)T

, and

X3 =
(
x3

1, . . . , x
3
nO

)T
is the output vector.

• W 1 is the nH ×(nI +1) matrix formed with the weightsw1
jk , andW 2 is the

nO × nH matrix formed with the w2
ij . W = (W 1,W 2) ∈ R

nH×(nI+1) ×
R

nO×nH .
• F is the function defined for all X2 =

(
x2

1, . . . , x
2
nH

)T
by F (X2) =

(f(x2
1),

. . . , f(x2
nH

))T

With these notations, the response R of the neural network to the input X1 with
the weights W is simply given by

X3 = R(W,X1) := W 2F (W 1X1) (4)

2.2 Training of neural networks

Consider the observation set Ω with nP observations

Ω = {(Xi, Yi), i = 1, . . . , nP } (5)

in which each Xi ∈ R
nI is a vector corresponding to input variables, and Yi ∈

R
nO is the response to the input Xi. For each observation we denote by ri(W ) =

R(W,Xi) − Yi the residual and r(W ) = (r1(W ), . . . , rnp(W ))T will be called
residual vector. The difference between neural network output and observed
response is called the discrepancy function and is given by eqn. (6).

GΩ(W ) = (r1, . . . , rnP ) ∈ R
nO×nP (6)

In order to make the neural network a good approximation model, we minimize
the difference between the network output and the observed response, i.e. we look
for the weights Ŵ which is a solution of the following minimization problem

min
W

hΩ(W ) :=
1
2
‖GΩ(W )‖2 (7)

The minimization problem is solved using zero memory Levenberg-Marquardt
algorithm as described in section 2.3. First, the set of patterns Ω is divided into
three parts, the training set ΩT , the generalization set ΩG, and the validation set
ΩV . The initial weights W0 are set to small random values between −0.1 and 0.1
and the neural network is trained in following three phases.
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2.2.1 First training phase
We look for the size of the hidden layer nH that allows us to make a good training
of the neural network on the patterns from ΩT . This means thatnH is automatically
increased, and

hΩT (Ŵ0) = min
W

hΩT (W ) (8)

is solved until hΩT (Ŵ0) becomes smaller than a threshold precision η > 0.

2.2.2 Regularization phase
We now add a Tikhonov regularization term to the functional hΩT and we look for
the regularization parameter β in order to enforce the weights involved in the defi-
nition of the basis functions to remain small. By this way, we try to define smooth
and stretched basis functions that will prevent the neural network to oscillate too
much.

• If hΩG(Ŵ0) < η, then we set β̂ = 0;
• otherwise, for several increasing values of β > 0, we look for Ŵβ that solves

min
W

[
hΩT (W ) + β

1
2(nI + 1)nH

‖W 1‖2

]
(9)

In this minimization problem weights are initialized to the value obtained at the
end of first training phase. We denote by β̂ the value of β for which hΩG(Ŵβ) is
the smallest.

2.2.3 Final training phase
We perform finally a new training phase on the set ΩT∪ΩG using the regularization
parameter β̂ provided by the previous step and Ŵβ as initial weights.

min
W

[
hΩT ∪ΩG(W ) + β̂

1
2(nI + 1)nH

‖W 1‖2

]
(10)

2.3 Levenberg-Marquardt algorithm

Levenberg-Marquardt algorithm is a combination of steepest descent method and
Gauss-Newton algorithm [8–10]. The iterative descent algorithms consist in defin-
ing a descent direction d, and the new point W+ is obtained from the current point
W using the following update rule

W+ = W + d (11)

The descent direction, d is given by [10](
J(W )TJ(W ) + αI

)
d = −J(W )T r(W ) (12)

where α > 0 and J(W ) = ∇r(W )T is the Jacobian matrix. The Levenberg-
Marquardt algorithm is then the following:

• Choose an initial point W0 and a real number α0 > 0, k = 0
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• Compute dk, solution to
(
J(Wk)TJ(Wk) + αkI

)
dk = −J(Wk)T r(Wk)

• If hΩ(Wk + dk) < hΩ(Wk), set Wk+1 = Wk + dk, choose αk+1 < αk,
increase k and goto previous step; otherwise, decrease αk and goto previous
step. Stop if hΩ(Wk + dk) < η

2.3.1 Memory reduction and adjoint computation
As seen in eqn. (12), the Levenberg-Marquardt algorithm usually requires the com-
putation of the inverse of J(W )TJ(W ) + αI , whose size may be quite large in
some cases. For memory reduction, at least in terms of storage, the linear system in
eqn. (12) can be solved using the conjugate gradient method, which requires only
matrix-vector products. We only need to compute the left-hand side of eqn.(12) in
an efficient way. This can be done in two steps.

1. We first compute z = J(W )d. This quantity can be rewritten as follows

J(W )d = lim
ε→0

r(W + εd) − r(W )
ε

=
∂r(W + εd)

∂ε

∣∣∣∣
ε=0

(13)

and J(W )d corresponds to the differentiation of a vector-valued function r
with respect to a single parameter ε. This can be done very efficiently using
the forward mode of the algorithmic differentiation.

2. Then, we have to compute J(W )T z, which can be rewritten

J(W )T z =
nP∑
i=1

∇ri(W )zi = ∇
(

nP∑
i=1

ri(W )zi

)
= ∇ (r(W )T z

)
(14)

In this form, J(W )T z corresponds to the differentiation of a scalar function
with respect to several parameters and the reverse mode of the algorithmic
differentiation is particularly efficient in this case [11–13].

The computation of the right-hand side of (12) is realized in the same manner as
in the second step of the computation of the left-hand side.

3 Experimental setup

3.1 Description of the test cells

Two test cells, located at Limoux, France, with a roof surface area of 35 m2, outside
dimensions of 4×7 m2 on floor level and height of 3 m were used for the test. Each
cell is built without windows and there is no ventilation. The roof with inclination
of 36◦ is made up of rafter of 8 × 11 cm with spacing of 48 cm between adjacent
rafters and has clay tiles. The roof ridge has north-south orientation. The floor is
made up of wood paving and the under floor gap is over insulated with 40 cm of
mineral wool. The access to each test volume is by an airlock in the gable wall and
thus the thermal exchange takes place through walls and roof alone. Inside temper-
ature of each cell is maintained at 23◦C using two fan heater of 1 KW output. The
airlock is heated to 1◦C less than the main cell and acts as a guard cell. One test
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cell has TS9 multi-foil insulation of ACTIS [14] and other has 20 cm of mineral
wool insulation. The layout of each cell is in accordance with the manufacturer’s
instructions [14]. Infra red pictures made outside and inside of the test cells do not
reveal any significant differences between each kind of cells.

3.2 Instrumentation and measurements

Each cell is equipped with two temperature sensors located 1.5 m above the floor
and placed in an open gray PVC tube to shield them from air movements. Energy
consumption in each test cell is measured by recording current and voltage using
calibrated instruments. Weather parameters namely, the outside temperature, rela-
tive humidity, wind direction, wind speed and total solar radiation were recorded
per minute by a dedicated weather station at the site. The period of measurement
was from 1 December 2005 to 28 February 2006. Measurements are carried out
per minute and are recorded by dedicated data logger units. All quality control
checks pertaining to instrumentations were made. [14]

4 Simulations using GAP

4.1 Training of neural network

The consumption in a test cell is a function of meteorological parameters, namely,
the difference between outside temperature and temperature inside the chalet, wind
speed, wind direction, relative humidity and global solar radiation. Using GAP, two
neural networks pertaining to the data of two test cells are developed. Total 1513
observations spanned over the period 1/12/2005 to 31/12/2005 are used to train
the network. These networks are validated by predicting the consumption values
for the period of 1/1/2006 to 28/02/2006. Fig. 1, 2 shows the comparison between
measured and simulated energy consumptions corresponding to these experiments.

Table 1 shows the measured and simulated energy consumption in these test
cells. The difference between measured and simulated consumption is less than
1%. It is observed that the energy consumption in a test cell with TS9 material is
4% less than the energy consumption for a test cell with mineral wool.
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Figure 1: Comparison of measured and simulated energy consumption in a test cell
with TS9 insulation, located at Limoux, France.
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Figure 2: Comparison of measured and simulated energy consumption in a test cell
with mineral wool insulation, located at Limoux, France.

Table 1: Measured and simulated net energy consumption in test cells located at
Limoux, France.

Energy consumption in kWh

Cell with TS9 Cell with mineral wool

Measured Simulated Measured Simulated

137 136 143 142
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Figure 3: Comparison of measured and simulated energy consumption in a test cell
with multi-foil insulation, located at TRADA, U.K.

4.2 Prediction using neural network

These trained and validated neural networks are used to predict the energy con-
sumption of similar test cells with multi-foil insulation similar to TS9 and mineral
wool insulation located at TRADA in United Kingdom [15]. The weather data and
the consumption were measured for the period 1/1/2006 to 28/2/2006. Fig. 3, 4
shows the comparison of measured and simulated consumption. Table 2 provides
the values of measured and simulated consumption. For the cell with multi-foil
insulation the simulated consumption differs by 4% where as for the test cell with
mineral wool insulation the difference is 3%.

As part of the long term in situ data collection strategy, ACTIS planned to
set up new test cells in United Kingdom. The weather data spanned over the
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Figure 4: Comparison of measured and simulated energy consumption in a test cell
with mineral wool insulation, located at TRADA, U.K.

Table 2: Measured and simulated net energy consumption in test cells at TRADA,
United Kingdom.

Energy consumption in kWh

Cell with multi-foil insulation Cell with mineral wool

Measured Simulated Measured Simulated

165 159 138 134

period of 1/2/2006 to 28/02/2006 at eight different location in United Kingdom,
namely, Manchester, Norwich, London, Plymouth, Cardiff, Aberdeen, Newcastle
and Belfast is available. The weather data characteristics at these locations are dif-
ferent than those at Limoux, France. Fig. 5 shows the range of measured values
for outside temperature, wind direction, wind speed and global solar radiation at
Limoux, France and at these location in United Kingdom. The minimum tempera-
ture at these locations is higher than Limoux whereas global solar radiation values
are small compared to Limoux. In order to estimate the energy consumption in
test cells that would be built in near future at these sites, the neural network model
trained using weather data and consumption details in Limoux, France is used to
simulate the in situ energy consumption in test cells with TS9 and mineral wool
insulation materials.

Table 3 shows predicted energy consumption for the test cell with TS9 and min-
eral wool insulation to be built at each of the eight sites. The difference in energy
consumption for the test cell with TS9 and mineral wool insulations is also shown.
The predicted consumption in test cell with multi-foil insulation is less compared
to test cell with mineral wool insulation at Plymouth, Cardiff, Aberdeen, Newcas-
tle and Belfast whereas it is more by 2% at Manchester and by 1% at Norwich and
London. The standard deviation of predicted consumption values for test cell with
mineral wool is 9.7 whereas the corresponding values for the test cell with multi-
foil insulation is 6.5, possibly indicating that multifoil insulation is more robust to
varying weather conditions as compared to mineral wool insulation.
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Figure 5: Comparison of weather data at eight different locations in U.K. and of
Limoux, France.

Table 3: Simulated consumptions of test cells with ACTIS TS9 and mineral wool
insulation at eight different locations in United Kingdom.

Location Energy consumption (kWh) Difference

Mineral wool ACTIS TS9 (B-A)/B*100

(A) (B)

Manchester 135 138 2%

Norwich 136 137 1%

London 129 130 1%

Plymouth 155 128 −17%

Cardiff 132 126 −5%

Aberdeen 154 143 −7%

Newcastle 144 143 −1%

Belfast 140 136 −3%

5 Conclusion

GAP is a result of a powerful combination of several techniques such as the use of
a zero memory minimization method, specific activation function that guarantees
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the minimal change of weights, the use of a Tikhonov regularization technique
in order to build smooth and stretched basis functions. GAP is used to generate
neural network model to predict energy consumption of test cells as a function
of meteorological parameters using in situ data. It is demonstrated with examples
that properly trained networks can accurately predict the energy consumption of
houses located at some other locations also.
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