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Abstract 

Iron ore is railed several hundred kilometres from inland mines to port, where it 
is crushed and separated into lump and fines products for shipment to customers. 
During crushing, each trainload is sampled and assayed to measure the grade, in 
iron, phosphorus, silica, alumina and a number of other minerals. Trainloads 
from different mines are of systematically different grade. Accurate product 
grades for each trainload, from each mine, are required for production planning 
and quality control. During crushing each trainload is contaminated with ore 
from the preceding and possibly from the following trainloads, so that the 
reported grade is biased by this dilution from the neighbouring trainloads. 
Although the dilution effect has long been recognised, it has not previously been 
quantified and therefore has not been corrected for. This paper describes the 
development, verification and use of a non-linear regression model enabling the 
amount of dilution to be estimated, so that the diluted grades can be corrected to 
undiluted grades. 
Keywords:  quality control, decision support, mining, non-linear regression, 
weighted least squares. 

1 Introduction 

The quality of the ore product depends upon it closely matching target 
composition, not only in iron, but also in phosphorus, silica and alumina. The 
four critically important composition elements will be referred to as the vector 
{Fe, P, SiO2, Al2O3}. A number of other elements are also monitored. The 
customer blast furnaces are tuned to receive ore of the agreed target composition. 
Issues relating to quality control in iron ore production are discussed in [1,2]. 
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     Iron ore is railed from five mines of differing average grades. At the port, run 
of mine trainloads are processed sequentially and separated into lump and fines 
products. Each trainload is sampled during processing. The lump and fines 
products are stacked onto lump and fines stockpiles, blended from the five mines 
     The mine grades vary around consistently different means. For example, 
average Fe grade is considerably higher for Mine A than for the others. It has 
long been observed that trainload assays sampled at the port are biased according 
to the mine sources of trainloads processed before and after it. For example, a 
Mine A trainload followed and preceded by trainloads not from Mine A has 
lower Fe content than if its neighbours are other Mine A trainloads.  
     The effect is because ore from the neighbouring trainloads contaminates the 
beginning and end of each trainload sample, during dumping, screening and 
crushing. As each trainload is processed, some material mixes into the next 
trainload. Each trainload sample has a sharp beginning and end, but the sample 
contains some material from the following and/or preceding trainloads. 
     The dilution does not affect the estimated composition of the final product, 
because dilution of each trainload is compensated by dilution of its neighbours. 
But it does affect the reported composition of ore from each contributing mine, 
and this systematic error is important because it interferes with the planning and 
quality control for each mine. For each mine, each day’s production is planned to 
satisfy composition targets, based on mine estimates of the currently available 
ore sources. Comparison between mine estimates and subsequent port assays are 
used to monitor and adjust the mine estimates: this adjustment is compromised if 
the port assays have error, depending on which type of trainload preceded or 
followed them. 
     A non-linear regression model is described, to estimate the average dilution 
from the preceding and following trainloads. It is shown that the lump and fines 
samples for 12 kilotonnes trainloads are each contaminated by nearly one 
kilotonne from the preceding trainload and a median of about 450 tonnes from 
the following trainload. 
     The results of the analysis are now being routinely used to provide more 
accurate trainload grade data. 

2 The model 

Consider a variable X, with mean M., 
 

 E[Xn] = M     (1) 
 

 Xn = M + dn     (2) 
 
where dn is the deviation for the nth observation Xn. 
     M can be estimated as the average of Xn. But it can equally well be estimated 
as the value that minimises ∑dn

2. The two formulations are equivalent, giving the 
same estimate for M, but the second formulation is a simple regression model. 
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     Now consider the grade Xn for a trainload portion, which may come from any 
one of the five mines. It has total tonnage Wn kt, of which p kt comes from the 
previous trainload portion, and q kt comes from the following trainload portion. 
The expected value of Xn is now: 
 

 E[Xn] = (pMp + (Wn-p-q)Mc + qMq)/Wn   (3) 
 

 Xn = (pMp + (Wn-p-q)Mc + qMq)/Wn + dn   (4) 
 

where Mp, Mc, Mq are the mean values for the previous, current and following 
trainload portions, each being MA, MB, MC, MD or ME, according to which of the 
five mines is its source. 
     Define M as the vector {MA, MB, MC, MD, ME}, and unit vectors Sp, Sc, Sq to 
specify the source mines of the preceding, current and following trainload 
portions. For example, if the preceding trainload portion comes from Mine B, 
then Sp is {0, 1, 0, 0, 0}. Thus: 

 
 Mp = Sp.M´; Mc = Sc.M´; Mq = Sq.M´          (5) 

 
and equation (4) becomes: 
 

 Xn = (pSp + (Wn-p-q)Sc + qSq).M´/Wn + dn   (6) 
 
Equation (6) is a non-linear regression model. 
     Ordinary least squares (OLS) regression minimises ∑dn

2. Weighted least 
squares regression (WLS) weights the variance terms to minimise ∑Wndn

2. This 
can be achieved by multiplying both sides of equation (6) by √Wn: 
 

 Yn = Xn√Wn= (pSp + (Wn-p-q)Sc + qSq).M´/√Wn + en  (7) 
 
The OLS solution to equation (7) is thus a WLS solution to equation (6), 
providing estimates of the dilution factors p and q and the mine means, M. 

3 Data used and its preparation 

The analysis to be reported here is based upon a total of 9,403 “Port Actual” 
records, for ore crushed during the period of about ten months.  
     Each “Port Actual” record reported a trainload portion of lump or fines from a 
total of 2,468 trainloads, being 1,471 trainloads from Mine A, 548 from Mine B, 
279 from Mine C, 108 from Mine D, and 62 from Mine E. 
     Each trainload portion was processed through one of two buildings, “TCB1” 
or” TCB2”. Many trainloads were split between TCB1 and TCB2, with a 
trainload portion going to each. Successive trainload portions of the same  
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product (Lump or Fines) of the same trainload going through the same building 
were merged. For each building and product, the trainload portions were ordered 
by start time.  
     For each trainload portion record, five fields were added for the each of the 
unit vectors Sp, Sc and Sq, to specify the preceding, current and following mine, 
as defined above. Each vector had four zero components, and a single unit 
component. Consider: 
  

 Sp={0,1,0,0,0}; Sc={1,0,0,0,0}; Sq={0,0,0,0,1}        (8) 
 

In the example of equation (8) the preceding, current and following trainloads 
come from Mines B, A and E respectively. 
     Each trainload portion had a grade vector G, defining its assayed 
composition. Assays were available not only for the four control minerals {Fe, P, 
SiO2, Al2O3}, but also for {H2O, LOI, Mn, TiO2, CaO, MgO, S, K2O}. LOI is 
“loss on ignition”, a measure of moisture content. 

 
G = {Fe, P, SiO2, Al2O3, H2O, LOI, Mn, TiO2, CaO, MgO, S, K2O} 

 
The vector fields Prod = {L(ump), F(ines)} and Plant = {TCB1, TCB2} were 
added, specifying the product (lump or fines) and plant building for each 
trainload portion. For example, a lump trainload portion going through TCB2 has 
Prod = {1,0} and Plant = {0,1}. 
     Fields Tp and Tq were calculated, as the time interval (in minutes) before the 
start and after the end of each trainload portion. 

4 Discriminant analysis 

Solution of the non-linear regression equation (7) requires that the mean values 
of X differ significantly between the five mine sources. 
     The model could be run repeatedly, for each mineral, giving repeat estimates 
for the dilution. It is more efficient to let X be the linear composite of the 
minerals that best separates the sources. The “best” separation is defined as 
maximising the between-group variance divided by the within-group variance. 
The linear composite satisfying this condition is known as the first discriminant 
function. The second discriminant function again maximises the between-group 
variance divided by the within group variance, subject to the constraint that the 
second discriminant function is orthogonal (uncorrelated) to the first 
discriminant function. A useful description of discriminant analysis is supplied in 
the SPSS™ reference guide [3]. 
     With five groups, four orthogonal discriminant functions can be extracted. 
We are interested only in the first discriminant function, since it has the greatest 
possible power to discriminate between the five groups. The statistical package  
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SPSS™ was used to apply discriminant analysis. The first discriminant function 
scores were added to the data file. The discriminant analysis was run separately 
for lump and for fines. 
     The correlations between the mineral grades and a discriminant function are 
referred to as the “loadings” of the mineral grades on the discriminant function. 
The loadings for the first discriminant function, for lump and for fines, are 
tabulated below. 

Table 1:  Loadings on the first discriminant function. 
 

5 Model solution 

The non-linear regression equation (7) can be solved to estimate p and q and the 
mine means M. The dilutants p and q are not necessarily constants, but may 
themselves be expressed as functions, of the trainload portion weight Wn, the 
crusher plant (TCB1 or TCB2), the product (Lump or Fines), time, et cetera. 
     The model of equation (7) could be run separately for lump and fines, and it is 
to be expected that the mean value vector will be different for lump and fines. 
However, the two analyses can be combined. Letting the vector of mean values 
M be ML and MF respectively for lump and fines, equation (7) becomes the 
combined equation: 

 
 Yn=Xn√Wn=(pSp+(Wn-p-q)Sc+qSq).(L.ML´+F.MF´)/√Wn+en     (9) 

 
The statistical package SPSS™ was again used, to solve the non-linear 
regression model for the unknown parameters p, q, ML and MF, which could be 
expressed as functions. 
     A range of physically believable models were tested, rejecting any terms not 
significant at the 5% significance level. The following model was found 
significant in all its terms: 

 
 p = P1*Wn     (10) 

 
 q = Q1*Wn*exp(-H*Tq)    (11) 

 
 ML = {MAL, MBL, MCL+GCL*Time, MDL, MEL}        (12) 

 
 MF = {MAF+GAF*Time, MBF+GBF*Time, MCF, MDF, MEF}              (13) 

 

Mineral Fe P SiO2 Al2O3 H2O LOI Mn TiO2 CaO MgO S K2O

Lump -.53 .54 .09 .58 -.01 .87 -.04 .33 -.26 -.28 .29 -.17 

Fines -.77 .47 .57 .60 -.01 .72 -.17 .22 -.29 -.33 .38 -.13 
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Parameters defining p and q are of operational interest. All are significant at the 
0.0001% level, as tabulated below. 
     Parameters for ML and MF represent discriminant function score means and 
are of no further interest. The coefficients GCL, GAF and GBF, were all 
significantly negative, indicating that the means for Lump from Mine C Lump 
and for Fines from Mines A and B decrease with time. Slopes against time for 
the other means were tested, and none were significant at the 5% level. 
 

Table 2:  Dilution parameter estimates. 
 

6 Testing for further dilution models 

The dilution model of equations (10) and (11) support the model for which: 
  1) The tonnage dilution from the previous trainload portion is proportional to 

the tonnage of the current trainload portion. 
  2) The tonnage dilution from the following trainload portion is proportional to 

the tonnage of the current trainload portion, declining exponentially 
according to the time gap between the current and following trainload 
portions. 

Further terms were added to the model of equations (10) to (13), one by one, to 
test if the model required significant augmentation. 

6.1 Potential additions to the “p” model 

p  = P0 + P1.Wn  P0 =  .034 +/- .023 
Sig.(P0=0) =14%                  (14) 

 
p = P1*Wn.exp(-K*Tp)  K = 1.92 +/- 1.11 

Sig.(K=0) = 8.4%                  (15) 
 

p = P1.Wn
K   K = .808 +/- .091 

Sig.(K=1) = 3.5%                 (16) 
 

p = (PB.TCB2+P1).Wn PB = -.0005 +/- .008 
Sig.(PB=0) = 94%                           (17) 

 
p = (PF.Fines+P1).Wn  PF = -.015 +/- .010 

Sig.(PF=0) = 15%                 (18) 

StdErr Sig.

P1 .083 .005 < 0.0001%

Q1 .119 .017 < 0.0001%

H/minute .060 .012 < 0.0001%

Parameter
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6.2 Potential additions to the “q” model 

q = Q0+Q1.Wn.exp(-H*Tq)  Q0 = -.016 +/- .019 
   Sig.(Q0=0) = 40%                                     (19) 

 
q = Q1.WnK.exp(-H*Tq)  K = .895 +/- .175 

   Sig.(K=1) = 55%                          (20) 
 

q = (QB.TCB2+Q1).Wn  QB = -.042 +/- .020 
   Sig.(QB=0) = 3.7%                                    (21) 

 
q = (QF.Fines+Q1).Wn   QF = -.019 +/- .024 

   Sig.(QF=0) = 43%                                   (22) 

7 Results 

None of the examined extensions to the model of equations (14) to (22) are 
significant at the 3% level. Two extensions, (16) and (21), significant at the 5% 
level, provide weak evidence that: 
  1) p may increase a little less than linearly with Wn. 
  2) q may be smaller for the second plant TCB2. 
It was concluded that the evidence for these effects was not strong enough to 
justify further complicating the model. 

8 Undiluting the data 

Having established that each trainload is diluted with a tonnage p from the 
previous rake, and q from the following rake, we can write the formula for 
calculating the trainload’s undiluted composition vector XU from its diluted 
composition XD, and the compositions XP and XQ of the preceding and following 
trainloads. 
 

 XU = (XD – pXP – qXQ)/(1-p-q)   (23) 
 

where p = 0.083, and q = 0.119*exp(-.06Tq)  
     The dilution model of equations (10) and (11) was used to undilute the diluted 
data, in accord with equation (23). The compositions XP and XQ of the preceding 
and following trainloads should really be the undiluted values. For convenience, 
the diluted values were used instead, introducing a negligible second-order error. 
     As an example of the undilution process, cumulative distributions for diluted 
and undiluted lump Fe values are plotted in Figure 1, and for lump Al2O3 values 
are plotted in Figure 2. The graphs show the results only for Mines A and B. Fe 
is consistently higher for Mine A, and undilution makes it higher still. Al2O3 is 
consistently lower for Mine A, and undilution makes it lower still. The reverse 
applies to Mine B. 
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Figure 1: Cumulative distributions for lump Fe, Mines A and B. 

9 Conclusion 

The results plotted in Figures 1 and 2 show examples of the undilution process. 
Similar comparisons can be made for the other three mines, and for the other 
minerals of interest, P and SiO2. 
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Figure 2: Cumulative distributions for lump Al2O3, Mines A and B. 

     It should be noted that the undilution applied to a particular trainload takes 
account of the particular trainloads that precede and follow it. If a trainload from 
a particular mine is preceded and followed by trainloads also from the same 
mine, then the undiluted composition will be close to the diluted composition.  
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     The procedure is now used routinely to improve the estimates of composition 
for trainloads from each mine. The greater accuracy has helped in improving the 
tracking of mine estimate errors and thus has improved the mine planning 
capability. 
     The model of equations (9)–(13), leading to the undilution formula of 
equation (23) is somewhat counter-intuitive. It finds that the tonnage 
contaminated from the previous and following trainloads is proportional to the 
tonnage of the trainload being contaminated. Our expectation had been that the 
contamination should be a tonnage amount independent of the tonnage of the 
contaminated trainload. The significances of the model parameters in equations 
(10), (11), (14) and (19) support the counter-intuitive model. 
     The model finds that the contamination from the following trainload decays 
exponentially, according to the time interval between the trainload being 
contaminated and the following trainload. The decay has a half-life of about 
twelve minutes. This makes sense. The sampling from a trainload stops when the 
operator judges that the trainload processing has finished. If the following 
trainload starts being fed in straight away, some of it will be picked up in the 
sample, but not if there is an appreciable time interval between the trainloads. 
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