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Abstract 

This paper considers the problem of applying the Kalman filters to nonlinear 
systems. The Kalman filter (KF) is an optimal linear estimator when the process 
noise and the measurement noise can be modeled by white Gaussian noise. The 
KF only utilizes the first two moments of the state (mean and covariance) in its 
update rule. In situations when the problems are nonlinear or the noise that 
distorts the signals is non-Gaussian, the Kalman filters provide a solution that 
may be far from optimal. Nonlinear problems can be solved with the extended 
Kalman filter (EKF). This filter is based upon the principle of linearization of the 
state transition matrix and the observation matrix with Taylor series expansions. 
Exploiting the assumption that all transformations are quasi-linear, the EKF 
simply makes linear all nonlinear transformations and substitutes Jacobian 
matrices for the linear transformations in the KF equations. The linearization can 
lead to poor performance and divergence of the filter for highly non-linear 
problems. An improvement to the extended Kalman filter is the unscented 
Kalman filter (UKF). The UKF approximates the probability density resulting 
from the nonlinear transformation of a random variable. It is done by evaluating 
the nonlinear function with a minimal set of carefully chosen sample points. 
The posterior mean and covariance estimated from the sample points are 
accurate to the second order for any nonlinearity. The paper presents 
a comparison of the estimation quality for two nonlinear measurement models of 
the following Kalman filters: covariance filter (KF), extended filter (EKF) and 
unscented filter (UKF). 
Keywords:  nonlinear model, discrete Kalman filter, extended Kalman filter, 
unscented Kalman filter, integrated navigation system. 
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1 Introduction 

The classical Kalman filter is used for linear dynamic systems [1] moreover 
extended Kalman filter EKF for nonlinear systems [1, 3] or unscented Kalman 
filter UKF [2, 4–8]. Unscented Kalman filter with comparison to EKF is not 
based on linear model but operates on the statistical parameters of the 
measurement and state vectors that are subsequently nonlinearly transformed. 
The unscented Kalman filter is based on the unscented transform (UT). 
     Kalman filtration [1, 3] is based on the following models of state and 
measurement vectors respectively: 

( ) ( ) ( ) ( ) ( ) ( )1 ,  ,      for    ~ ,  k k k k k N k+ =       x f x u w w 0 Q , 

 ( ) ( ) ( ) ( ) ( )1 ,       for    ~ ,  k k k k N k+ =       z h x v v 0 R .            (1) 

Vector x(k) is n-dimensional state vector in the moment k, z(k) is p-dimensional 
measurement vector in the moment k, f(x, u, w) denotes nonlinear state function 
describing dynamic behavior of the system between k+1 and k moments, u is the 
input system vector, w is the noise state vector, Q is the covariance matrix of the 
noise state (denotes uncertainty in the dynamic model during transition from k+1 
to k moments, h(x, v) denotes nonlinear measurement function, v p-dimensional 
vector of measurement noise, R is covariance matrix of measurement errors with 
dimensions p×p, P is covariance matrix of state vector with dimensions n×n. 

2 Object dynamics and measurement models 

In this paper process model is described by state vector in the following form: 

 T
x y z x y zp p p v v v=  

 
 

x
vp

,                                   (2) 

where p is three-dimensional position vector (in Cartesian coordinates). Vector v 
is three-dimensional speed vector. 
     State matrix has the form: 

 3 3 3 3

3 3 3 3

t× ×

× ×

∆ 
=  
 

I I
F

0 I
,                                              (3) 

where t∆  is the time step between moments k and k+1, I is identity matrix. 
     In this case the state vector (2) and state matrix (3) are identical for 
covariance filter (KF), extended filter (EKF) and unscented filter (UKF). 

2.1 System with constant velocity 

The object moves with constant velocity (acceleration is zero). Velocity 
components (vx, y, z) are additive Gaussian noise. Fig.1 presents analyzed model in 
the graphic form. 
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Figure 1: Positioning principle. 

     The measured parameters in the measurement model are: r – distance from 
object to observer (radar), θ – azimuth, φ – elevation. Dependency between 
object position in the Cartesian coordinates and measurements in spherical 
coordinates is described by nonlinear function. Thus the measurement vector is 
given by: 

 ( ) ( ) T
2 2 2 2 2 2arctan arccosx y z y x z x y zp p p p p p p p p

r ϕθ

 = + + + + 
  

z .    (4) 

Measurement matrix for discrete and unscented filters is given by: 

 [ ]3 3 3 3× ×=H I 0 .                                        (5) 

The vector function h(*) has the following form: 

 [ ]Tr θ ϕ=h .                                            (6) 

     In the case of extended filter, linearization of the measurement function h for 
each measurement step by the use of partial derivative relatively to all elements 
of state vector should be made. The final measurement matrix for extended 
Kalman filter is as follows: 

( ) ( ) ( )2 2 2 2

2 2

22 2 2 2 2 2

0 0 0
0 0 0 0

0 0 0

x y z

y xk z z

y z zx z

z z

p r p r p r
p pr p r p

p p r pp p
rr r p r r p

=

 
∂  = = − − ∂

 − − 
 − − 

x x
hH
x

,    (7) 

where Cartesian object coordinates are given by: 

cos sinxp r θ ϕ= ,   sin cosyp r θ ϕ= ,   coszp r ϕ= . 

2.2 System with complex movement 

As an example of complex dynamics, the object movement around z axis is 
presented. This situation causes nonlinear relationships both in state and 
measurement matrix. Figure 2 in detail illustrates considered object. 
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Figure 2: Positioning principle. 

     One can see that a nonlinear relation exists between measurements from the 
system and elements of the motion: 

 tan x yv vθ = ,    sinx obv v θ= ,    cosy obv v θ= ,    2 2
ob x yv v v= + .       (8) 

In the presented system initial values of vector state are described by the 
followings: 

 [ ]T(0) 0 0 0ob ob obr h v=x .                              (9) 

Nonlinear state functions (in the moment k) are defined as follows: 

 ( )

( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )
( )

1

2

3

4

5

6

cos arctan

sin arctan

sin arctan

cos arctan

ob y x

ob y x

z z

ob y x

ob y x

z

r p p k t
f

r p p k tf
p k v k tf

k
f v p p k t
f

v p p k t
f

v k

ω

ω

ω

ω

  + ∆   
    + ∆   
   + ∆
 = = 
  + ∆     
    + ∆        

f , (10) 

where the azimuth and the angular velocity of the object can be calculated via the 
following formulas:  

( ) ( ) ( )1k k k tθ θ ω+ = + ∆ ,    ( ) ( ) ( )ob obk v k r kω =   for  2 2
ob x yr p p= + . (11) 

     This nonlinear equation requires linearization, which in extended Kalman 
filter is performed around the estimated object’s trajectory. For the EKF state 
matrix has been calculated as a matrix of derivatives of nonlinear f(*) function 
with respect to the components of the state vector x.  

 = ∂ ∂F f x ,                                                 (12) 

where: 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

782  Computational Methods and Experimental Measurements XIII



 

1
3 2cos sinyx ob x

ob
x ob ob x

pp v tpf r
p r r p

γ γ
β

 ∆∂
= + + ∂  

, 

1
3

1cos siny ob y
ob

y ob ob x

p v tpf r
p r r p

γ γ
β

∆ ∂
= + − ∂  

, 

1 0
z

f
p
∂

=
∂

,   1 sinx

x ob

tvf
v v

γ
∆∂

=
∂

,   1 siny

y ob

tvf
v v

γ
∆∂

=
∂

,   1 0
z

f
v
∂

=
∂

, 

2
2 3sin cosyx ob x

ob
x ob x ob

pp v tpf r
p r p r

γ γ
β

 ∆∂
= − + ∂  

, 

2
3

1sin cosy ob y
ob

y ob x ob

p v tpf r
p r p r

γ γ
β

∆ ∂
= + − ∂  

, 

2 0
z

f
p
∂

=
∂

,   2 cosx

x ob

tvf
v v

γ
∆∂

=
∂

,   2 cosy

y ob

tvf
v v

γ
∆∂

=
∂

,   2 0
z

f
v
∂

=
∂

, 

3 0
x

f
p
∂

=
∂

,   3 0
y

f
p
∂

=
∂

,   3 1
z

f
p
∂

=
∂

,   3 0
x

f
v
∂

=
∂

,   3 0
y

f
v
∂

=
∂

,   3

z

f t
v
∂

= ∆
∂

, 

4
2 3 cosy ob x

ob
x x ob

p v tpf v
p p r

γ
β

 ∆∂
= − − ∂  

,   4
3

1 cosob y
ob

y x ob

v tpf v
p p r

γ
β

∆ ∂
= − ∂  

, 

4 0
z

f
p
∂

=
∂

,   
( )4 sin cosob ob

x
x ob ob

r v tf v
v r v

γ γ+ ∆∂
=

∂
, 

( )4 sin cosob ob
y

y ob ob

r v tf v
v r v

γ γ+ ∆∂
=

∂
,   4 0

z

f
v
∂

=
∂

, 

5
2 3 siny ob x

ob
x x ob

pf v tp
v

p p r
γ

β
 ∂ ∆

= + ∂  
,   5

3

1 cosob y
ob

y ob x

v tpf
v

p r p
γ

β
∆ ∂

= − ∂  
, 

5 0
z

f
p
∂

=
∂

,   
( )5 cos sinob ob

x
x ob ob

r v tf v
v r v

γ γ− ∆∂
=

∂
, 

( )5 cos sinob ob
y

y ob ob

r v tf v
v r v

γ γ− ∆∂
=

∂
,   5 0

z

f
v
∂

=
∂

, 

6 0
x

f
p
∂

=
∂

,   6 0
y

f
p
∂

=
∂

,   6 0
z

f
p
∂

=
∂

,   6 0
x

f
v
∂

=
∂

,   6 0
y

f
v
∂

=
∂

,   6 1
z

f
v
∂

=
∂

, 

 
for: ( )arctan  y x ob obp p t v rγ = + ∆ ,   2 21 y xp pβ = + . 
     For discrete and unscented Kalman filter state matrix has a form given by (3). 
An observation matrix H in the measurement model is identical as in the first 
model (11). 
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3 Simulation results 

The accuracy comparisons have been examined by the use of simulation in the 
Matlab environment. In order to ensure the same conditions, research of filters 
were realized with identical form of state vector covariance matrix Q, 
measurement vector R and initial state vector covariance matrix P(0) in both 
systems. Similarly to Julier et al [4] the following parameters of unscented 
transform have been assumed: λ = 3, β = 1, κ = 3. 
     Furthermore the following values of noise covariance matrix have been 
applied: 

 
[ ]

[ ]
2

3x33x3
2 2

3x3 3x3

0.0225 
0.49 

diag

diag

m
m s−

 
=  
 

0
Q

0
,                     (13) 

covariance matrix of measurement noise: 

 2 2 20.7225 0.16 0.16 diag m deg deg =  R ,                     (14) 

initial covariance matrix of vector state errors: 

 ( ) [ ]
[ ]

2
3x33x3

2 2
3x3 3x3

1 0
1 

diag

diag

m
m s−

 
=  
 

0
P

0
.                        (15) 

3.1 Examination of a system with constant velocity 

Examination results are presented for covariance filter (DKF – green line), 
extended filter (EKF – red line) and for unscented filter (UKF – blue line). The 
examinations results include values of mean square error (mse) of estimated state 
vector: 

 ( ) ( )Tˆ ˆ *KF real real n= − −mse x x x x ,                          (16) 

and covariance error P, according to Kalman filtering theory, estimated 
component of state vector x (Fig. 3–5): 

 ( ) ( ) ( ) ( ) ( )Tcov *KF 1k k k k k= + = +P F P F Q .                  (17) 

Mean square error and covariance error of speed components (Fig. 6–8) has also 
been done. 

3.2 Examination of a system with complex movement 

The system examination conditions are the same as for system with constant 
velocity. Results for covariance filter DKF, extended filter EKF and unscented 
filter UKF are presented. They include values of mse error of estimated state 
vector and covariance error estimated components of the position (Fig. 9–11) 
and values of mse error and covariance error of speed components (Fig. 12–14). 
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Figure 3: Mean square error of the 
estimated component px and 
covariance error Ppx of the 
position. 

Figure 4: Mean square error of the 
estimated component py 
and covariance error Ppy of 
the position. 

  

Figure 5: Mean square error of the 
estimated component pz and 
covariance error Ppz of the 
position. 

Figure 6: Mean square error of 
estimated vx and 
covariance error Pvx of 
speed component 

 

 

 

Figure 7: Mean square error of 
estimated vy and covariance 
error Pvy of speed 
component. 

Figure 8: Mean square error of 
estimated vz and 
covariance error Pvz of 
speed component. 
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Figure 9: Mean square error of the 
estimated component px and 
covariance error Ppx of the 
position. 

Figure 10: Mean square error of the 
estimated component py 
and covariance error Ppy of 
the position. 

  

Figure 11: Mean square error of the 
estimated component pz 
and covariance error Ppz 
of the position 

Figure 12: Mean square error of 
estimated vx and 
covariance error Pvx of 
speed component. 

  

Figure 13: Mean square error of 
estimated vy and 
covariance error Pvy of 
speed component. 

Figure 14: Mean square error of 
estimated vz and 
covariance error Pvz of 
speed component. 
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     The estimation of object speed in the Cartesian coordinates (Fig. 15-17) and 
determination of mean square error and covariance error of speed components 
(Figs. 18–20) has also been done. 

  

Figure 15: Estimated vx speed 
component. 

Figure 16: Estimated vy speed 
component. 

  

Figure 17: Estimated vz speed 
component. 

Figure 18: Mean square error of 
estimated vx and 
covariance error Pvx of 
speed component. 

  

Figure 19: Mean square error of 
estimated vy and 
covariance error Pvy of 
speed component. 

Figure 20: Mean square error of 
estimated vz and 
covariance error Pvz of 
speed component. 
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3.3 Analysis of simulation results 

For nonlinear measurement model extended and unscented filters estimate the 
object position nearly identically. Discrete Kalman filter is becoming non-
optimal filter in the sense of minimizing the mean square error. When the mean 
square error is included within the area determined by the covariance error of the 
estimated vector state then filter is performing correctly. Last principle is 
satisfied for extended and unscented Kalman filters but not for DKF. During 
speed estimation one can see, that difference between extended and unscented 
filters is minimal. UKF gives smaller errors what results from nature of speed 
components, which are band-limited Gaussian processes. The bigger are the 
jumps of noise values the worse of extended Kalman filter performance is.  

4 Conclusions 

Results of estimation using Discrete and Extended and Unscented Kalman Filter 
for system with constant velocity and for system with complex movement show 
that Unscented Kalman Filter operating as algorithm of data processing in 
system with nonlinear dynamics guarantees the best quality. Nonlinear transform 
makes Discrete Kalman Filter not to be optimal in sense of minimum mean 
square error. Loss stabilization in EKF is possible for long measurement steps 
whereas decreasing of measurement steps enlarges computational costs as a 
result of complicated calculations of Jacobians. UKF algorithm does not require 
calculation of Jacobians which simplifies its complexity. The Unscented Kalman 
Filter provides effective estimation in case of strongly nonlinear models what 
recommends its use in practice. 
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