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Abstract 

The measurements and subsequent system identification of the cables play 
extremely important roles in health monitoring of the whole cable-stayed bridge. 
The technique of ambient vibration measurement where only the output signal is 
available has been commonly adopted to measure the cable-stayed bridges. In 
this case, it is most popular in the literature to combine the random decrement 
method together with the Ibrahim time domain method for system identification. 
To apply the above two methods for cable identification, however, the problem 
of imperfect random decrement signatures and the difficulty of conducting    
well-distributed measurements at various stations of a single cable have to be 
overcome. The crucial time shifting parameter is first explored in this study to 
extend the applicability of the Ibrahim time domain method. In addition, with the 
mode separation technique and a novel multiple random decrement method 
recently proposed, an effective method to identify the parameters of several cable 
modes merely based on the measurement of a single station is developed and 
demonstrated by applying it to the velocity record of a cable of the Chi-Lu   
cable-stayed bridge. The validation of this method is also provided in this paper. 
Keywords:  ambient vibration measurement, Ibrahim time domain method, time 
shifting, mode separation, multiple random decrement method. 

1 Introduction 

The cables of cable-stayed bridges are the primary force-transmitting members 
of the whole structure system. Consequently, the measurements and subsequent 
system identification of the cables play extremely important roles in health 
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monitoring of the whole cable-stayed bridge. The dynamic response of the cable 
usually attributes to quite a few of the lower modes due to its low flexural 
stiffness. It is accordingly required to obtain the modal parameters of more 
modes in the identification of cable than other civil structures. 

With the advantages of mobility and easy setup, the technique of ambient 
vibration measurement has been recently applied to conduct the system 
identification for most of the cable-stayed bridges. Since only the output signal is 
available in this case, it is necessary to apply the system identification techniques 
based merely on output signals for determining the modal parameters of cables. 
Limited by in situ working constraints, it is usually difficult to conduct the 
measurement with multiple stations uniformly distributed along the same cable. 
Moreover, the insignificant signals from ambient vibration also induce problems 
such as noise pollution in practical applications. 

To tackle the above problems, it is aimed in this study to develop an effective 
method for accurately identifying the parameters of various cable modes merely 
based on the measurement of a single station installed on cables. For identifying 
the modal parameters simply based on output signals, it is most popular in the 
literature to combine the random decrement (RD) method together with the 
Ibrahim time domain (ITD) method. To apply the above two methods for cable 
parameter identification, however, two major problems need to be overcome. 
First of all, imperfect RD signatures may be usually induced from the cable 
measurements due to narrow-banded excitations. Furthermore, the ITD method 
is not valid to identify the parameters for multiple modes when only the 
measurement of a single station is available. The crucial time shifting parameter 
is first explored in this study to extend the applicability of the Ibrahim time 
domain method. In addition, with the mode separation technique and a novel 
multiple random decrement method recently proposed, an effective method to 
identify the modal parameters of cable is developed. Demonstrated by applying 
it to the measured velocity records of the cables of Chi-Lu cable-stayed bridge, 
the validation of this method is also provided in this paper. 

2 Random decrement and Ibrahim time domain methods 

In this section, the RD and ITD methods will be briefly reviewed to clarify a few 
problems for directly applying them in the modal parameter identification of 
cables, which provides the foundation for developing a novel and more effective 
identification method. 

2.1 Random decrement method 

Assume that a linear system with n degrees-of-freedom is subjected to a 
stationary white noise with a zero mean. The corresponding equations of motion 
can then be expressed as: 

( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f                                        (1) 
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where M, C, and K represent the n n×  structural mass, damping, and stiffness 
matrix, respectively.  In addition, ( )tx  signifies the displacement response vector 
and ( )tf  is the excitation force vector. Considering that Equation (1) is satisfied 
by this system at instant it , a time shifting of τ  leads to: 

( ) ( ) ( ) ( )i i i it τ t τ t τ t τ+ + + + + = +Mx Cx Kx f                         (2) 

Selecting N different starting instants from eqn (2) and then computing their 
mean, it yields: 

1
1

1( ) ( ) ( ) ( )  as 
N

i n
i

τ τ τ t N
N

τ ×
=

+ + = + = →∞∑My Cy Ky f 0              (3) 
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 = +∑  
y x  and 0 stands for a zero matrix with its dimension 

indicated in the subscript. Since ( )tf  is assumed to be a zero-mean and 
stationary white noise, the right-hand side of eqn (3) has to become a zero vector 
when N →∞ . Consequently, eqn (1) describing the forced vibration is now 
turned into another free vibration equation in the form of eqn (3) where the 
variable vector ( )tx  is replaced by ( )τy . In general, a stable characteristic 
function ( )τy , usually called the random decrement signature in the literature, 
can be obtained when 500N >  (Cole [1]). It was also pointed out by other 
studies that 1000N =  is the optimal number of superposition and 100N =  is the 
minimum acceptable number (Jeary [2]). 

Taking a single velocity signal ( )x t  for example, its random decrement 
signature can be obtained with the following detailed steps: 

1. Choose a fixed value of velocity sx  as the cutting threshold such that ( )x t  
is with values of sx  at N different time instants 1 2,  ,  , Nt t t . 

2. Set the extracted signal duration dT  such that the extracted signal can 
adequately reflect the dynamic characteristics of system. 

3. Extract N different time histories, all with a duration dT , from the measured 
signal. Average all those time histories to yield the corresponding random 
decrement signature ( )y τ . 

2.2 Ibrahim time domain method 

If the random decrement signature can be obtained from the ambient vibration 
measurements of cables and sufficiently represents the corresponding free 
vibration response, the ITD method is then usually applied to determine the 
associated modal parameters. Consider the free vibration system illustrated in 
eqn (3), but replace the time variable τ by t. Transformation of this equation into 
the state space further results in a first-order differential equation: 
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1 1
n n n n× ×
− −

     
=    − −     

y 0 I y
y M K M C y

                                       (4) 

where I indicates an identity matrix with its dimension shown in the subscript. 
Solving eqn (4) as an eigenvalue problem, the displacement and velocity vectors 
can be expressed, respectively as: 

2

1
( ) i

n λ t
i

i
t e

=
= ∑y Γ ; 

2 2

1 1
( ) i i

n nλ t λ t
i i i

i i
t e eλ

= =
= =∑ ∑y Γ Φ                             (5) 

where iλ ’s are the eigenvalues of the system matrix and iΓ ’s are the 
corresponding 1n×  eigenvectors. 

Based on eqn (5), the velocity vectors at s different time instants can be 
assembled into a matrix as 
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22 1 2 2

2 1 2 2 2
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y y y Φ Φ Φ          (6) 

where ( ),  1,  2,  , i it i s= =y y . If eqn (6) is shifted forward in the time axis 
with ∆m t  and 2 ∆m t , respectively, then 

11 1 1 2

22 1 2 2

2 1 2 2 2

1 2 1 2 2[ ] [ ]

s

s
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where ( )i it m t= + ∆y y  and ˆ ( 2 ),i it m t= + ∆y y 1,  2,  , .i s=  In addition, 
iλ m t

i ie
∆=Φ Φ  and 2ˆ ,  1,  2,  , 2 .iλ m t

i ie i n∆= =Φ Φ  Two combinations of eqns 
(6)–(8) can be obtained as 

   
= = =   
   
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where U and V are 2n s×  matrices and Ψ  and Ψ̂  are 2 2n n×  matrices. 
Examination of eqn (9) reveals that if a system related matrix A is defined as 
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then eqn (10) obviously indicates that 21 , , nm tm te eλλ  are the eigenvalues of A 
and directly related to the system eigenvalues: 1 2, , nλ λ . Pre-multiplying the 
first part in eqn (9) by A and applying eqn (10) lead to: 

ˆ= = =AU AΨΛ ΨΛ V                                         (11) 

Therefore, the least squares method can be conveniently adopted to obtain A 
based on eqn (11), followed by the previously mentioned eigenvalue analysis. 

It has been shown in the literature that the eigenvalues of the state space 
system in eqn (4) have to be in complex conjugate pairs and the eigenvalues 

2 1 2 and j jλ λ−  corresponding to the j-th mode are related to the modal frequency 

jω  and modal damping ratio jξ  by 

2
2 1 2, i 1 i ,  1,  2,  , j j j j j j j j j nλ λ ξ ω ω ξ α β− = − ± − = ± =             (12) 

Consequently, the eigenvalues of A also appear in complex conjugate pairs as 

( ) ( )2 1 2, cos i sin

i ,  1,  2,  , 

j j jm t m t m t
j j

j j

e e e m t m t

a b j n

λ λ α β β−  = ± 
= ± =

                (13) 

With eqn (13), it is easy to obtain: 

( )2 21 ln
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= +  and 11 tan ,  1,  2,  , 
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and then yield: 

2 2
2 1 2j j j j jω α βλ λ−= = = +  and ,  1,  2,  , j

j
j

α
ξ j n

ω
−

= =        (15) 

3 Parametric study for time shifting in the ITD method 

The combination of RD and ITD methods, as described in the previous section, 
can usually provide meaningful results for several modal parameters if the 
ambient vibration measurements can be obtained for various stations of the target 
system and the frequency content of environmental excitations is not far away 
from that of a white noise. Unfortunately, the above two conditions are not 
always possible for certain civil structures, especially the cable-stayed bridge 
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cables. To overcome these critical difficulties in practical applications, a first 
step is to improve the accuracy of the ITD method if the input time history is not 
an ideally decaying function under free vibration. As described in Section 2.2, 
the matrix A utilized in the ITD method has to be constructed by shifting a 
certain amount of time and its eigenvalues are then solved to determine the 
modal frequencies and damping ratios of system. It is obvious that different 
adopted values for the number of shifted time steps m will certainly lead to 
different matrices of A and altered eigenvalues, especially for the case with a 
response not closed related to a free vibration function. The parametric study of 
m is consequently conducted in this section to determine the optimal selection.  

Table 1:  Identified parameters of SDOF systems for various time shifting 
values. 

SDOF system with damping ratio 0.1% SDOF system with damping ratio 1% 
No. of shifted 

time steps 
m 

Eigenvalues  
of A  

Natural 
Frequency 
ω (Hz) 

Damping 
Ratio  
ξ (%) 

Eigenvalues 
of A  

Natural 
Frequency 
ω (Hz) 

Damping 
Ratio  
ξ (%) 

5 0.987 ± 0.156i 0.9999 1.000 0.965 ± 0.155i 1.0259 14.006 
10 0.951 ± 0.309i 0.9997 0.103 0.930 ± 0.306i 1.0149 6.719 
15 0.891 ± 0.454i 0.9997 0.067 0.873 ± 0.450i 1.0096 3.736 
20 0.809 ± 0.587i 0.9996 0.047 0.799 ± 0.584i 1.0056 1.650 
25 0.707 ± 0.707i 0.9996 0.038 0.702 ± 0.705i 1.0027 0.724 
30 0.588 ± 0.809i 0.9996 0.036 0.584 ± 0.806i 1.0010 0.488 
35 0.454 ± 0.890i 0.9996 0.036 0.451 ± 0.887i 1.0005 0.453 
40 0.309 ± 0.950i 0.9996 0.036 0.307 ± 0.946i 1.0005 0.436 
45 0.157 ± 0.987i 0.9996 0.036 0.155 ± 0.982i 1.0006 0.430 
50 0.001 ± 0.999i 0.9996 0.036 −0.001 ± 0.993i 0.9994 0.427 
55 −0.156 ± 0.987i 0.9996 0.036 −0.156 ± 0.980i 1.0004 0.418 
60 −0.308 ± 0.951i 0.9996 0.036 −0.307 ± 0.944i 1.0001 0.419 
65 −0.453 ± 0.891i 0.9996 0.036 −0.449 ± 0.883i 0.9997 0.450 
70 −0.586 ± 0.809i 0.9996 0.036 −0.581 ± 0.801i 0.9995 0.496 
75 −0.706 ± 0.707i 0.9996 0.036 −0.697 ± 0.699i 0.9993 0.535 
80 −0.808 ± 0.588i 0.9996 0.037 −0.796 ± 0.581i 0.9991 0.588 
85 −0.890 ± 0.455i 0.9996 0.038 −0.872 ± 0.448i 0.9988 0.734 
90 −0.950 ± 0.310i 0.9996 0.041 −0.919± 0.303i 0.9984 1.170 
95 −0.986 ± 0.157i 0.9996 0.062 −0.889± 0.124i 1.0069 3.596 

100 0.236; −0.988 • • 0.760; −0.999 • • 

150 −0.002 ± 0.998i 0.9996 0.035 0.001 ± 0.981i 1.0002 0.414 
200 0.189; 0.973 • • 0.535; 0.998 • • 

The simulated response functions for a single-degree-of-freedom (SDOF) 
system with various parameter values (natural frequency 1Hzω =  and damping 
ratio 0.1,  1%ξ = ) are adopted to investigate the effects of the time shifting 
parameter in the ITD method. For these two different cases, the same initial 
displacement and ground acceleration reflecting the measured environmental 
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excitation are assumed to compute the corresponding displacement time histories 
of 300 seconds. A threshold of 80% of the standard deviation of each time 
history and an extracted duration of 150secdT =  are adopted to carry out the RD 
method. Those selected values for the RD parameters do not correspond to the 
optimal choice (Liao [3]) and are intended to result in the imperfect RD 
signatures where the excitation effects are not totally filtered out. In addition, the 
examined values of m are limited to the time shifting range within a period of 
system, especially focused on the shifting less than a half of the period. It should 
be noted that 200m =  corresponds to a time shifting of a period since 

0.005sect∆ =  is taken in computation. The identified frequencies and damping 
ratios from the ITD method for all these different cases are listed in Table 1. 

From the results in Table 1, it is evidently observed that the identified natural 
frequencies and damping ratios from the ITD method converge to stable values 
as the shifting parameter m gradually increases from small values, especially 
when the time shifting reaches one quarter of the system period ( 50m = ). 
Nevertheless, the identified results would get worse if m keeps increasing to 
larger values. The worse case is bumped as the time shifting grows up to a half 
of the system period ( 100m = ) where real eigenvalues of A are obtained and no 
feasible system parameters can be identified. The above comparison clearly 
indicates that the value of m corresponding to a shifting of one quarter of the 
system period is the optimal selection while the value of m corresponding to a 
shifting of a half of the system period needs to be always avoided. 

The reason why the shifting parameter m is capable of inducing such a 
critical difference can be explained by considering the periodic characteristics for 
the free vibration of SDOF systems. If the ITD method is applied on an ideal 
time history of free vibration, the time shifting of one half of the system period 
would only find another time history that is different from the original time 
history in signs and with a scalar factor. Thus, the associated matrix A will not 
be full-ranked and it is impossible to solve for sufficient eigenvalues. In a more 
general sense, the same problem will be encountered if the time shifting is taken 
as a multiple of one half of the system period. Theoretically, the other values of 
time shifting are eligible for effective identifications. When the RD signature is 
not an ideal time history of free vibration, however, different values of time 
shifting in the application of the ITD method will include deviated errors into A 
and produce the identified results with a variety of accuracy.  As the time 
shifting is close to one quarter of the system period, the least related original and 
shifted time histories will be obtained and consequently lead to the optimal 
identification. Similarly, the values of time shifting such as three or five quarters 
of the system period will also yield pretty good results. As for the values of time 
shifting close to a multiple of one half of the system period, the shifted time 
history will be nearly dependent on the original time history such that real 
eigenvalues of A will be obtained and no feasible identification is possible. It is 
also noteworthy that the identified natural frequencies in different cases are all in 
excellent accuracy while the errors for the identified damping ratios may not be 
negligible. This problem comes from the fact that the RD method cannot totally 
exclude the effects of external excitations and will be next discussed. 
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4 Multiple random decrement method  

In a very recent study by the authors (Wu [4]), a novel multiple random 
decrement (MRD) method was proposed to successfully exclude the effects from 
background excitation. It will be briefly reviewed and illustrate in this section for 
developing an effective method to identify the modal parameters of cable.  

The ambient vibration measurement for a cable numbered L33 (length = 
126.4 m and inclined angle = 26 ) of the Chi-Lu cable-stayed bridge close to the 
epicenter of 1999 Ch-Chi earthquake occurred in Taiwan can be taken as an 
example for illustration. In Figures 1 and 2, respectively, the originally measured 
velocity signal and its corresponding RD signature (cutting threshold 

0.8= × standard deviation of the original measurement and dT = half of the 
original time history) are displayed in both forms of time history and Fourier 
amplitude spectrum. It is noteworthy in Figure 1 that all the cable frequencies are 
nearly in an arithmetic sequence, as predicted by the string theory. However, 
there exist two additional peak frequencies. These two extra peak frequencies 
have been pointed out to be corresponding to two significant modal frequencies 
of the bridge deck (Liao [3]). From the cable’s standpoint, these two frequencies 
can be regarded as the particularly concentrated parts in the frequency content of 
external excitation. Even in this case where the excitation is far away from a 
white noise, Figure 2 indicates that the contributions from these two non-cable 
frequencies have been considerably suppressed after conducting the RD method. 
Therefore, in the cases where the excitation force is not close to a white noise, 
the RD method can still greatly raise the contributions from all the modal 
frequencies and also relatively diminish those from the rest frequencies even 
though the resulted RD signature may not be a perfect free vibration time 
history. Based on this generalized concept, a novel multiple random decrement 
(MRD) method was proposed. More specifically, the conventional RD method 
can be repeatedly applied on each round of the resulted RD signature to 
exclusively filter out the initially substantial effects of the excitation frequencies 
such that the goal of extracting the free vibration time history can be practically 
attained. 
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Figure 1: Original measurement for Cable 33 of the Chi-Lu bridge. 

Two associated problems have to be solved before the MRD can be 
effectively applied in the identification of cable parameters. First of all, the 
extracted duration dT  in each round of RD is the length of time history for the 
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next round and thus needs to be taken as large as possible such that a sufficient 
superposition number N can be reached in the next round. But contradictorily, no 
adequate number N would be attained if a very large value of dT  is selected in 
the current round. To balance this problem for mutually compensated N and dT  
in each round of RD, it was suggested (Wu [4]) to choose dT  as a half length of 
the signal from the previous round. As for the second problem, the associated 
characteristic of the MRD method to also suppress the contributions from the 
secondary modes makes it impossible for the subsequent ITD identification to 
directly obtain meaningful parameters for several modes at one time. This 
obstacle will be overcome in the next section. 
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Figure 2: First round RD for Cable 33 of the Chi-Lu bridge. 

5 Mode separation and example 

Due to the inherited properties of uniformly separated modal frequencies and 
extremely small modal damping ratios, the interaction between any two modes 
of cable would be very limited. This feature was further exploited (Wu et al [4]) 
to develop a mode separation technique for effectively identifying the parameters 
of multiple modes. After Fourier transform is taken on the measured velocity 
time history, the modal frequencies of cable can be accurately determined from 
the associated Fourier amplitude spectrum. With these available modal 
frequencies to decide different frequency ranges for separation, the frequency 
response contributed by each mode of cable is then conveniently extracted in the 
frequency domain. In this research, the mid-points between any two adjacent 
modal frequencies are adopted to divide the frequency ranges for different 
modes. The corresponding time history for each separated mode is subsequently 
obtained by performing the inverse Fourier transform. Finally, the MRD method 
together with the ITD method can be independently applied on these individual 
modal responses to identify the dynamic parameters for each mode. 

Cable 33 of the Chi-Lu bridge is again taken as an example. The parameters 
for the first 10 modes of this cable are aimed for identification. After the mode 
separation is performed as previously described, the MRD technique is applied 
on each separated modal time history with a cutting threshold 0.8= × standard 
deviation of the target time history and dT = half of the original time history for 
each round of RD. The MRD method is set to stop before the criterion of 
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100N ≥  cannot be guaranteed. In addition, the ITD technique is also utilized to 
identify the corresponding parameters after each round of RD. As discussed in 
Section 3, the time shifting for each mode is in consistent correspondence to 1/4 
of each modal period. The identified parameter values for each mode in all the 
RD rounds are arranged and listed in Table 2. Based on these results, it is 
obvious that the conventionally ambiguous modal damping ratios all reach stably 
convergent values, usually with very few rounds of RD. This trend shows that 
not a lot of RD rounds are required to obtain satisfactory parameters from 
identification and also indicates the effective performance of the approach 
proposed in this study. 

Table 2:  Identified modal parameters of Cable L33 in each round of MRD. 

Identified modal parameters 
MRD 

1ω     
(Hz) 

1ξ   
(%) 

2ω    
(Hz) 

2ξ  
  (%) 

3ω    

(Hz) 
3ξ  

  (%) 
4ω    

(Hz) 
4ξ  

  (%) 
5ω     

(Hz) 
5ξ  

  (%) 
1st Round  0.913 0.2061 1.808 0.0745 2.720 0.0994 3.627 0.1546 4.534 0.0630 

2nd Round  0.914 0.2312 1.808 0.0559 2.720 0.0934 3.626 0.2007 4.534 0.0685 

3rd Round  0.914 0.2349 1.807 0.0530 2.721 0.1003 3.625 0.2324 4.533 0.0717 

MRD  6ω     

(Hz) 
6ξ   

(%) 
7ω    

(Hz) 
7ξ  

(%) 
8ω    

(Hz) 
8ξ  

(%) 
9ω    

(Hz) 
9ξ  

(%) 
10ω    

(Hz) 
10ξ  

(%) 
1st Round 5.474 0.1302 6.365 0.0461 7.278 0.1075 8.221 0.0881 9.141 0.0480 

2nd Round  5.473 0.1260 6.365 0.0444 7.279 0.1108 8.220 0.0696 9.141 0.0533 

3rd Round  5.475 0.1140 6.365 0.0426 7.278 0.1141 8.220 0.0669 9.141 0.0560 

4th Round  • • 6.365 0.0431 • • • • • • 
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